Research on Application of a Novel Nanophase Material in Water Base Drilling Fluids for Shale Drilling
-
摘要: 针对页岩气钻探中水基钻井液携岩、封堵纳米孔径、抑制页岩分散等方面需求,研制了一种直径约为30 nm的纳米层状材料LDP。在流变方面,120℃老化后,2% LDP悬浮液比6%钠膨润土具有更高的弹性模量、屈服应力和剪切稀释性,与0.5% PAC-LV溶液复配实验表明,1% LDP的增黏提切性能优于4%钠膨润土;同时,周期震荡应变扫描实验表明,LDP悬浮液在高低应变转换时具有更好的凝胶结构恢复和拆散性能;粒径分析、透射电镜分析表明,LDP比钠膨润土在水溶液和PAC-LV溶液中更容易形成明显的网状结构;在封堵方面,利用N2吸附分析了页岩在不同溶液浸泡后的孔隙,结果表明,LDP比纳米二氧化硅、钠膨润土具有更明显的封堵效果,扫描电镜分析揭示了LDP材料能够封堵页岩狭长纳米孔道。在页岩抑制方面,2% LDP抑制黏土线性膨胀率较清水降低45%,优于7% KCl,100℃页岩滚动回收率约为59.6%,与7% KCl基本一致,土块浸泡在2% LDP溶液96 h形貌完整。整体而言,LDP纳米材料在增黏提切、纳米孔隙封堵和页岩抑制方面有良好的效果,在页岩气高性能水基钻井液中有一定的应用前景。Abstract: A layered Nanophase material LDP of 30 nm in particle sizes has been developed to satisfy the needs of shale drilling such as cuttings carrying, plugging nanometer-sized fractures and inhibiting the dispersion of shale formations. Laboratory experiments showed that a 2%LDP suspension, after aging at 120℃, had higher elastic modulus, yield stress and better shear thinning ability than a 6% sodium bentonite suspension. In 0.5%PAC-LV solution, 1%LDP shows better ability in increasing the viscosity and gel strengths of the solution than 4% Na-bentonite. Periodic oscillatory strain scanning demonstrated that LDP suspension showed better ability to restore and break down its gel structure at the switch of high strain and low strain. Particle size measurement and transmission electron microscopy indicated that, compared with Na-bentonite, it is much easier for the LDP to form network structure both in water and in PAC-LV solution. To evaluate the plugging performance of LDP, shale samples rinsed in different solutions were measured for their pore sizes using N2 adsorption method. The measurement showed that LDP has better plugging capacity than nano SiO2 and Nabentonite. SEM scanning showed that LDP can plug the long and narrow nano-sized holes in shale. In clay swelling test, the percent core swelling caused by 2%LDP solution was 45% of the percent core swelling caused by fresh water, better than 7%KCl solution. The percent shale cuttings recovery of LDP in hot rolling test at 100℃ was 59.6%, equivalent to 7%KCl solution. Clay clod rinsed in 2% LDP solution for 96 h still kept its integrity. In general, LDP nanophase material is beneficial to viscosity and gel strength enhancement, plugging of nanometer-sized pores and inhibiting shale formations, and is thus prospective in formulating high performance water base drilling fluids for shale drilling.
-
[1] 许博, 闫丽丽, 王建华. 国内外页岩气水基钻井液技术新进展[J]. 应用化工, 2016, 45(10):1974-1981.XU Bo, YAN Lili, WANG Jianhua. Technical progress of high performance water-based drilling fluids for shale gas in China and abroad[J]. Applied Chemical Industry, 2016, 45(10):1974-1981. [2] 龙大清, 樊相生, 王昆,等. 应用于中国页岩气水平井的高性能水基钻井液[J]. 钻井液与完井液, 2016, 33(1):17-21.LONG Daqing, FAN Xiangsheng, WANG Kun, et al. High Performance water base drilling fluid for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):17-21. [3] 孙金声, 刘敬平, 闫丽丽,等. 国内外页岩气井水基钻井液技术现状及中国发展方向[J]. 钻井液与完井液, 2016,33(5):1-8.SUN Jinsheng, LIU Jingping, YAN Lili, et al. Status quo of water base drilling fluid technology for shale gas drilling in China and abroad and its developing trend in China[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):1-8. [4] KHALIL M, JAN B M, TONG C W, et al. Advanced nanomaterials in oil and gas industry:design, application and challenges[J]. Applied Energy, 2017,191:287-310. [5] 王森, 陈乔, 刘洪,等. 页岩地层水基钻井液研究进展[J]. 科学技术与工程, 2013, 13(16):4597-4602.WANG Sen, CHEN Qiao, LIU Hong, et al. Shale gas development on water-based drilling fluids research progress[J]. Science Technology and Engineering, 2013, 13(16):4597-4602. [6] 王治法, 蒋官澄, 林永学,等. 美国页岩气水平井水基钻井液研究与应用进展[J]. 科技导报, 2016, 34(23):43-50.WANG Zhifa, JIANG Guancheng, LIN Yongxue, et al. Advances and application of horizontal-well water-based mud in US shale gas reserviors[J]. Science & Technology Review, 2016, 34(23):43-50. [7] KHALIL M, JAN B M, TONG C W, et al. Advanced nanomaterials in oil and gas industry:Design, application and challenges[J]. Applied Energy, 2017, 191:287-310. [8] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861. [9] LI M C, WU Q, SONG K, et al. Soy protein isolate as fluid loss additive in bentonite-water-based drilling fluids[J]. ACS Applied Materials & Interfaces, 2015, 7(44):24799-24809. [10] LI M C, WU Q, SONG K, et al. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite waterbased fluids[J]. ACS Applied Materials & Interfaces, 2015,7(8):5006-5016. [11] ZHONG H, QIU Z, HUANG W, et al. Poly(oxypropylene)-amidoamine modified bentonite as potential shale inhibitor in water-based drilling fluids[J]. Applied Clay Science, 2012, 67:36-43. [12] FERREIRA C C, TEIXEIRA G T, LACHTER E R, et al. Partially hydrophobized hyperbranched polyglycerols as non-ionic reactive shale inhibitors for water-based drilling fluids[J]. Applied Clay Science, 2016,132:122-132. [13] ZHONG H, QIU Z, TANG Z, et al. Study of 4, 4'-methylenebis-cyclohexanamine as a high temperatureresistant shale inhibitor[J]. Journal of Materials Science, 2016, 51(16):7585-7597. [14] SHADIZADEH S R, MOSLEMIZADEH A, DEZAKI A S. A novel nonionic surfactant for inhibiting shale hydration[J]. Applied Clay Science, 2015, 118:74-86. 期刊类型引用(16)
1. 张瑜,王彦玲,张传保,许宁,李迪,梁诗南,史文静,丁文慧. 深层超深层油藏耐温抗盐驱油体系研究进展. 化工进展. 2025(01): 1-16 . 百度学术
2. 刘雄,王雪松,李斌. 无机纳米材料在钻井液润滑剂中的研究进展. 山东化工. 2024(08): 100-102+110 . 百度学术
3. 黄昱昊,徐建根,步文洋,张代维,朱庆帅. 钻井液用纳米封堵剂的研究与进展. 辽宁化工. 2023(03): 436-438+449 . 百度学术
4. 常晓峰,孙金声,王清臣. 水平井和斜井井眼清洁技术研究进展及展望. 钻井液与完井液. 2023(01): 1-19 . 本站查看
5. 孙德,王平全,李早元,付旻皓,冉超. 纳米材料在页岩钻井工作液中的应用进展. 当代化工研究. 2023(19): 5-7 . 百度学术
6. 司西强,王中华,吴柏志. 中国页岩油气水平井水基钻井液技术现状及发展趋势. 精细石油化工进展. 2022(01): 42-50 . 百度学术
7. 陈力力,郭建华,谢刚. 碳纳米管封堵剂在水基钻井液中的作用机理. 钻井液与完井液. 2022(01): 29-35 . 本站查看
8. 薛森. 抗盐耐温型纳米乳胶封堵剂PF-NSEAL的研制与应用. 当代化工. 2022(08): 1938-1942 . 百度学术
9. 杨现禹,蔡记华,蒋国盛,石彦平,陈书雅,魏朝晖,谢章建. 维持页岩井壁稳定的物理封堵模拟和化学抑制实验研究. 钻探工程. 2021(04): 37-46 . 百度学术
10. 陈俊斌,明显森,陶怀志,舒小波,邵平. 页岩气水基钻井液在YS-AB井现场试验与认识. 钻采工艺. 2021(04): 98-103 . 百度学术
11. 马鹏,张磊,聂育志,陈红壮,邱在磊,董国峰,张顺. 纳米淀粉粒子的高效制备及其对钻井液性能的影响. 油田化学. 2021(04): 580-583+607 . 百度学术
12. 邓虹,殷鸽,王狮军,王乾,崔金明,刘青松. 适用于深层页岩气储层的高效水基钻井液体系研究及应用. 钻采工艺. 2020(01): 90-93+12-13 . 百度学术
13. 李朝川,杨晓军. 膨润土的改性及其在钻井液中的应用. 中国石油和化工标准与质量. 2019(05): 149-150 . 百度学术
14. 武元鹏,田应佩,罗平亚,林元华. 纳米碳酸钙的制备及在水基钻井液的应用研究. 钻井液与完井液. 2019(04): 407-413 . 本站查看
15. 李坤豫,廖奉武,胡靖,王文进,胡友林. 疏水纳米SiO_2在泥页岩水基钻井液中的应用. 能源化工. 2019(03): 56-59 . 百度学术
16. 赵素娟,游云武,刘浩冰,周超群,陈长元,罗志刚. 涪陵焦页18-10HF井水平段高性能水基钻井液技术. 钻井液与完井液. 2019(05): 564-569 . 本站查看
其他类型引用(8)
-

计量
- 文章访问数: 916
- HTML全文浏览量: 238
- PDF下载量: 364
- 被引次数: 24