留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型纳米材料在页岩气水基钻井液中的应用研究

刘凡 蒋官澄 王凯 王玺 王金锡

刘凡, 蒋官澄, 王凯, 王玺, 王金锡. 新型纳米材料在页岩气水基钻井液中的应用研究[J]. 钻井液与完井液, 2018, 35(1): 27-33. doi: 10.3969/j.issn.1001-5620.2018.01.005
引用本文: 刘凡, 蒋官澄, 王凯, 王玺, 王金锡. 新型纳米材料在页岩气水基钻井液中的应用研究[J]. 钻井液与完井液, 2018, 35(1): 27-33. doi: 10.3969/j.issn.1001-5620.2018.01.005
LIU Fan, JIANG Guancheng, WANG Kai, WANG Xi, WANG Jinxi. Research on Application of a Novel Nanophase Material in Water Base Drilling Fluids for Shale Drilling[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(1): 27-33. doi: 10.3969/j.issn.1001-5620.2018.01.005
Citation: LIU Fan, JIANG Guancheng, WANG Kai, WANG Xi, WANG Jinxi. Research on Application of a Novel Nanophase Material in Water Base Drilling Fluids for Shale Drilling[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(1): 27-33. doi: 10.3969/j.issn.1001-5620.2018.01.005

新型纳米材料在页岩气水基钻井液中的应用研究

doi: 10.3969/j.issn.1001-5620.2018.01.005
基金项目: 

国家自然科学基金面上项目“井壁稳定性及钻井液低温流变性的控制方法研究”(51474231);国家“十三五”科技重大专项“复杂结构井、丛式井设计与控制新技术”(2017ZX05009-003);中国石油天然气集团公司“十三五”项目“乍得,尼日尔钻完井工厂化作业技术集成与应用”(2016D-4503)。

详细信息
    作者简介:

    刘凡,在读博士研究生,1990年生,现在从事钻井液技术研究工作。电话(010)89732239;E-mail:ferman-liu@hotmail.com。

    通讯作者:

    蒋官澄,教授,博士生导师,E-mail:jgc5786@126.com。

  • 中图分类号: TE254.4

Research on Application of a Novel Nanophase Material in Water Base Drilling Fluids for Shale Drilling

  • 摘要: 针对页岩气钻探中水基钻井液携岩、封堵纳米孔径、抑制页岩分散等方面需求,研制了一种直径约为30 nm的纳米层状材料LDP。在流变方面,120℃老化后,2% LDP悬浮液比6%钠膨润土具有更高的弹性模量、屈服应力和剪切稀释性,与0.5% PAC-LV溶液复配实验表明,1% LDP的增黏提切性能优于4%钠膨润土;同时,周期震荡应变扫描实验表明,LDP悬浮液在高低应变转换时具有更好的凝胶结构恢复和拆散性能;粒径分析、透射电镜分析表明,LDP比钠膨润土在水溶液和PAC-LV溶液中更容易形成明显的网状结构;在封堵方面,利用N2吸附分析了页岩在不同溶液浸泡后的孔隙,结果表明,LDP比纳米二氧化硅、钠膨润土具有更明显的封堵效果,扫描电镜分析揭示了LDP材料能够封堵页岩狭长纳米孔道。在页岩抑制方面,2% LDP抑制黏土线性膨胀率较清水降低45%,优于7% KCl,100℃页岩滚动回收率约为59.6%,与7% KCl基本一致,土块浸泡在2% LDP溶液96 h形貌完整。整体而言,LDP纳米材料在增黏提切、纳米孔隙封堵和页岩抑制方面有良好的效果,在页岩气高性能水基钻井液中有一定的应用前景。

     

  • [1] 许博, 闫丽丽, 王建华. 国内外页岩气水基钻井液技术新进展[J]. 应用化工, 2016, 45(10):1974-1981.

    XU Bo, YAN Lili, WANG Jianhua. Technical progress of high performance water-based drilling fluids for shale gas in China and abroad[J]. Applied Chemical Industry, 2016, 45(10):1974-1981.
    [2] 龙大清, 樊相生, 王昆,等. 应用于中国页岩气水平井的高性能水基钻井液[J]. 钻井液与完井液, 2016, 33(1):17-21.

    LONG Daqing, FAN Xiangsheng, WANG Kun, et al. High Performance water base drilling fluid for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):17-21.
    [3] 孙金声, 刘敬平, 闫丽丽,等. 国内外页岩气井水基钻井液技术现状及中国发展方向[J]. 钻井液与完井液, 2016,33(5):1-8.

    SUN Jinsheng, LIU Jingping, YAN Lili, et al. Status quo of water base drilling fluid technology for shale gas drilling in China and abroad and its developing trend in China[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):1-8.
    [4] KHALIL M, JAN B M, TONG C W, et al. Advanced nanomaterials in oil and gas industry:design, application and challenges[J]. Applied Energy, 2017,191:287-310.
    [5] 王森, 陈乔, 刘洪,等. 页岩地层水基钻井液研究进展[J]. 科学技术与工程, 2013, 13(16):4597-4602.

    WANG Sen, CHEN Qiao, LIU Hong, et al. Shale gas development on water-based drilling fluids research progress[J]. Science Technology and Engineering, 2013, 13(16):4597-4602.
    [6] 王治法, 蒋官澄, 林永学,等. 美国页岩气水平井水基钻井液研究与应用进展[J]. 科技导报, 2016, 34(23):43-50.

    WANG Zhifa, JIANG Guancheng, LIN Yongxue, et al. Advances and application of horizontal-well water-based mud in US shale gas reserviors[J]. Science & Technology Review, 2016, 34(23):43-50.
    [7] KHALIL M, JAN B M, TONG C W, et al. Advanced nanomaterials in oil and gas industry:Design, application and challenges[J]. Applied Energy, 2017, 191:287-310.
    [8] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
    [9] LI M C, WU Q, SONG K, et al. Soy protein isolate as fluid loss additive in bentonite-water-based drilling fluids[J]. ACS Applied Materials & Interfaces, 2015, 7(44):24799-24809.
    [10] LI M C, WU Q, SONG K, et al. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite waterbased fluids[J]. ACS Applied Materials & Interfaces, 2015,7(8):5006-5016.
    [11] ZHONG H, QIU Z, HUANG W, et al. Poly(oxypropylene)-amidoamine modified bentonite as potential shale inhibitor in water-based drilling fluids[J]. Applied Clay Science, 2012, 67:36-43.
    [12] FERREIRA C C, TEIXEIRA G T, LACHTER E R, et al. Partially hydrophobized hyperbranched polyglycerols as non-ionic reactive shale inhibitors for water-based drilling fluids[J]. Applied Clay Science, 2016,132:122-132.
    [13] ZHONG H, QIU Z, TANG Z, et al. Study of 4, 4'-methylenebis-cyclohexanamine as a high temperatureresistant shale inhibitor[J]. Journal of Materials Science, 2016, 51(16):7585-7597.
    [14] SHADIZADEH S R, MOSLEMIZADEH A, DEZAKI A S. A novel nonionic surfactant for inhibiting shale hydration[J]. Applied Clay Science, 2015, 118:74-86.
  • 加载中
计量
  • 文章访问数:  695
  • HTML全文浏览量:  184
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-12
  • 刊出日期:  2018-01-30

目录

    /

    返回文章
    返回