留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地聚合物新型固井胶凝材料及其抗盐性能分析

杨增民 庄建山 和建勇 郭春龙 褚军杰 毕毅

杨增民, 庄建山, 和建勇, 郭春龙, 褚军杰, 毕毅. 地聚合物新型固井胶凝材料及其抗盐性能分析[J]. 钻井液与完井液, 2017, 34(5): 79-85. doi: 10.3969/j.issn.1001-5620.2017.05.015
引用本文: 杨增民, 庄建山, 和建勇, 郭春龙, 褚军杰, 毕毅. 地聚合物新型固井胶凝材料及其抗盐性能分析[J]. 钻井液与完井液, 2017, 34(5): 79-85. doi: 10.3969/j.issn.1001-5620.2017.05.015
YANG Zengmin, ZHUANG Jianshan, HE Jianyong, GUO Chunlong, CHU Junjie, BI Yi. A New Geopolymer Well Cementing Gelled Material and Analysis of Its Resistance to Salt Attack[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(5): 79-85. doi: 10.3969/j.issn.1001-5620.2017.05.015
Citation: YANG Zengmin, ZHUANG Jianshan, HE Jianyong, GUO Chunlong, CHU Junjie, BI Yi. A New Geopolymer Well Cementing Gelled Material and Analysis of Its Resistance to Salt Attack[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(5): 79-85. doi: 10.3969/j.issn.1001-5620.2017.05.015

地聚合物新型固井胶凝材料及其抗盐性能分析

doi: 10.3969/j.issn.1001-5620.2017.05.015
详细信息
    作者简介:

    杨增民,工程师,1979年生,毕业于石油大学(华东)石油工程专业,现在从事固井工作。电话18232813230;E-mail:hejianyong@cnpc.com.cn。

  • 中图分类号: TE256.7

A New Geopolymer Well Cementing Gelled Material and Analysis of Its Resistance to Salt Attack

  • 摘要: 针对深井高盐环境中水泥浆固井胶凝材料耐腐蚀性低的问题,提出了地聚合物作为一种潜在新型固井胶凝材料的可行性,并对其抗盐性进行了实验分析。通过测量粉煤灰+偏高岭土基地聚物和G级油井水泥在不同浓度盐溶液中养护28 d的抗压强度,发现水泥试件随着盐溶液浓度提高,强度损失增大,而地聚物试件的强度却随着盐浓度的提高逆势提升。通过XRF元素分析、XRD矿物分析、酸碱性分析发现,盐水环境中的离子交换显著改变了水泥的水化环境和生成物成分,导致其强度显著降低,但对地聚物的地质聚合反应产物影响甚微。扫描电子显微镜SEM下的形貌分析表明,盐水环境可使地聚物产生更加致密的微观结构,这是其强度提高的主要原因。该研究表明,早龄期地聚物具有优异的抗盐性能,可在进一步加强实验验证后考虑在深井高盐腐蚀环境中代替水泥使用。

     

  • [1] 杨贤有. 保护油气层钻井液现状与发展趋势[J]. 钻井液与完井液,2001,17(1):25-30.

    YANG Xianyou. Current situation and development of drilling fluids for protection of hydrocarbon reservoir[J]. Drilling Fluid & Completion Fluid, 2001, 17(1):25-30.
    [2] 王关清, 陈元顿, 周煜辉. 深探井和超深探井钻井的难点分析和对策探讨[J]. 石油钻采工艺, 1998,20(1):1-7.

    WANG Guanqiang, CHEN Yuandun, ZHOU Yuhui. Analysis and discussion for the key drilling technology of deep and ultra-deep exploration well[J]. Petroleum Science and Technology, 1998,20(1):1-7.
    [3] 李中. 南海高温高压气田开发钻完井关键技术现状及展望[J]. 石油钻采工艺,2016,38(6):730-736.

    LI Zhong. Status and prospect of key drilling and completion technologies for the development of HTHP gasfield in South China Sea[J]. Oil Drilling & Production Technology, 2016, 38(6):730-736.
    [4] 黄熠. 南海高温高压勘探钻井技术现状及展望[J]. 石油钻采工艺,2016,38(6):737-745.

    HUANG Yi. Drilling technology for HTHP exploration in South China Sea and its prospect[J]. Oil Drilling & Production Technology, 2016, 38(6):737-745.
    [5] 罗黎敏, 黄熠, 齐美胜, 等. 南海西部高温高压小井眼钻井技术[J]. 石油钻采工艺,2016,38(6):757-761.

    LUO Limin, HUANG Yi, QI Meisheng, et al. Drilling technology for HTHP slim hole in western South China Sea[J]. Oil Drilling & Production Technology, 2016, 38(6):757-761.
    [6] 聂臻,许岱文,邹建龙,等. HFY油田高压盐膏层固井技术[J]. 石油钻采工艺,2015,37(6):39-43.

    NIE Zhen,XU Daiwen, ZOU Jianlong, et al.Cementing technology for high-pressure salt-anhydrate bed in HFY Oilfield[J]. Oil Drilling & Production Technology, 2015, 37(6):39-43.
    [7] 张金成, 牛新明, 张进双. 超深井钻井技术研究及工业化应用[J]. 探矿工程(岩土钻掘工程), 2015, 42(1):3-11. ZHANG Jincheng, NIU Xinming, ZHANG Jinshuang. Research and industrial application of drilling technology of ultra-deep wells[J]. Exploration Engineerign (Rock & Soil Drilling and Tunneling), 2015, 42(1):3-11.
    [8] 杨智光, 崔海清,肖志兴. 深井高温条件下油井水泥强度变化规律研究[J]. 石油学报, 2008, 29(3):435-437.

    YANG Zhiguang, CUI Haiqing, XIAO Zhixing. Change of cement stone strength in the deep high temperature oil well[J]. Acta Petrolei Sinica, 2008,29(3):435-437.
    [9] 孙伟, 缪昌文. 现代混凝土理论与技术[M]. 北京:科学出版社,2012. SUN Wei, MIAO Changwen. Theory and technology of modern concrete[M]. Beijing:Science Press, 2012.
    [10] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. J Therm Anal, 1989, 35(2):429-431.
    [11] DAVIDOVITS J, COMRIE DC, PATERSON JH, et al. Geopolymeric concretes for environmental protection[J]. Concrete International,1990, 12(7):30-39.
    [12] DUXSON P, PROVIS J L, LUKEY G C,et al. The role of inorganic polymer technology in the development of ‘green concrete’[J]. Cem Concr Res. 2007,37(12):1590-1597.
    [13] DETPHAN S, CHINDAPRASIRT P. Preparation of fly ash and rice husk ash geopolymer[J]. International Journal of Minerals Metallurgy and Materials. 2009,16(6):720-726.
    [14] FERNANDEZ-JIMENEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement:a descriptive model[J]. Cem Concr Res, 2005, 35(6):1204-1209.
    [15] JIAN HE, JIANHONG ZHANG, YUZHEN YU, et al. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture:A comparative study[J]. Construction and Building Materials,30(2012):80-91.
    [16] KUMAR A, KUMAR S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization[J]. Constr Build Mater, 2013,38:865-71.
    [17] PACHECO-TORGAL F, CASTRO-GORNES JP, JALALI S. Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment[J]. Constr Build Mater, 2008,22(3):154-61.
    [18] BREW DRM, MACKENZIE KJD. Geopolymer synthesis using silica fume and sodium aluminate[J]. Journal of Materials Science,2007,42(11):3990-3.
    [19] HAJIMOHAMMADI A, PROVIS JL, VAN DEVENTER JSJ. One-Part Geopolymer Mixes from Geothermal Silica and Sodium Aluminate[J]. Ind Eng Chem Res,2008,47(23):9396-405.
    [20] DUXSON P, FERNANDEZ-JIMENEZ A, PROVIS JL, et al. Geopolymer technology:the current state of the art[J]. Journal of Materials Science,2007,42(9):2917-33.
    [21] BUCHWALD A, HOHMANN M, KAPS C,et al. Stabilised foam clay material with high performance thermal insulation properties[J]. CFI-Ceram Forum Int, 2004,81(8):E39-E42.
    [22] BAKHAREV T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cem Concr Res,2005,35(6):1233-46.
    [23] BAKHAREV T. Resistance of geopolymer materials to acid attack[J]. Cem Concr Res,2005,35(4):658-70.
    [24] MALONE PG, RANDALL CA JR, KIRKPATRICK T. Potential applications of alkali-activated alumino-silicate binders in military opperations[R]. Report WES/MP/GL-85-15:US Army Corps of Engineers, 1985.
    [25] GIANCASPRO J, BALAGURU PN, LYON RE. Use of inorganic polymer to improve the fire response of balsa sandwich structures[J]. J Mater Civ Eng, 2006,18(3):390-7.
    [26] LYON RE, BALAGURU PN, FODEN A, et al. Fire-resistant aluminosilicate composites[J]. Fire and Materials,1997,212(2):67-73.
    [27] G O R E T T A K, F U L L E R J, C R AWL E Y E. Geopolymers[M]. Air Force Office of Scientific Research, 2006.
    [28] BALAGURU P. Geopolymer for protective coating of transportation infrastructures[J]. Contraction, 1998.
    [29] BELL JL, DRIEMEYER PE, KRIVEN WM. Formation of ceramics from metakaolin-based geopolymers. part Ⅱ:k-based geopolymer[J]. J Am Ceram Soc, 2009,92(3):607-615.
    [30] ZHANG SZ, GONG KC, LU HW. Novel modification method for inorganic geopolymer by using water soluble organic polymers[J]. Mater Lett, 2004,58(7-8):1292-1296.
    [31] ASTM D618-15. Standard specification for coal fly ash and raw of calcined natural pozzolan for use in concrete[S]. West Conshohocken, PA:ASTM international, 1994.
    [32] ASTM. D422-63, Standard test method for particlesize analysis of soils. Book of Standards:0408[S]. West Conshohocken, PA:American Society for Testing and Materials, ASTM International, 2007.
    [33] ATKINSON M J, BINGMAN C. Elemental composition of commercial seasalts[J]. Journal of Aquariculture and Aquatic Sciences, 1997, 8(2).
    [34] GUO X, SHI H,DICK W A. Compressive strength and microstructural characteristics of class C fly ash geopolymer[J]. Cem. Concr. Compos.,2010,32(2), 142-147.
    [35] ASTM C39/C39M-15a. Standard test method for compressive strength of cylindrical concrete specimens[S]. West Conshohocken, PA:ASTM international, 2015.
    [36] ASTM D1293-12. Standard test methods for pH of water[S]. West Conshohocken, PA:ASTM international, 2012.
  • 加载中
计量
  • 文章访问数:  448
  • HTML全文浏览量:  121
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-15
  • 刊出日期:  2017-09-30

目录

    /

    返回文章
    返回