留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地质聚合物原理实现泥饼固化的固井质量改善方法

步玉环 赵乐天 王春雨

步玉环, 赵乐天, 王春雨. 基于地质聚合物原理实现泥饼固化的固井质量改善方法[J]. 钻井液与完井液, 2017, 34(1): 96-100. doi: 10.3969/j.issn.1001-5620.2017.01.018
引用本文: 步玉环, 赵乐天, 王春雨. 基于地质聚合物原理实现泥饼固化的固井质量改善方法[J]. 钻井液与完井液, 2017, 34(1): 96-100. doi: 10.3969/j.issn.1001-5620.2017.01.018
BU Yuhuan, ZHAO Letian, WANG Chunyu. A Solution to the Improvement of the Quality of Cement Sheath-formation Bonding Based on Geopolymer Theory[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(1): 96-100. doi: 10.3969/j.issn.1001-5620.2017.01.018
Citation: BU Yuhuan, ZHAO Letian, WANG Chunyu. A Solution to the Improvement of the Quality of Cement Sheath-formation Bonding Based on Geopolymer Theory[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(1): 96-100. doi: 10.3969/j.issn.1001-5620.2017.01.018

基于地质聚合物原理实现泥饼固化的固井质量改善方法

doi: 10.3969/j.issn.1001-5620.2017.01.018
基金项目: 

国家重点基础研究发展规划“973”项目(2015CB251202)。

详细信息
    作者简介:

    步玉环,教授,1966年生,主要研究方向为油气井固完井工程\油气井流体力学与工程。电话13884951607;E-mail:buyuhuan@163.com。

  • 中图分类号: TE256

A Solution to the Improvement of the Quality of Cement Sheath-formation Bonding Based on Geopolymer Theory

  • 摘要: 钻井液在井壁上形成的一层不可固化的泥饼是固井二界面质量出现问题的主要因素,而泥饼固化技术是解决固井二界面问题的新思路。笔者结合矿渣固化泥饼技术和MTA固井技术的优势,提出了基于地质聚合物原理实现泥饼固化的新思。实验研究结果表明,在钻井液中加入偏高岭土和超细矿渣2种潜活性材料,当膨润土、偏高岭土和超细矿渣的比例为3︰3︰1时,钻井液形成的泥饼在激活剂的作用下能够具有较高强度;激活参数优化结果表明,激活剂硅酸钠的最佳加量为偏高岭土加量的72%,用于激活矿渣的氢氧化钠最佳加量为偏高岭土加量的2%,最优激活时间为15 min。此外,研究了偏高岭土和超细矿渣与钻井液的配伍性,发现2种材料对钻井液性能影响较小。通过泥饼固化实验结果显示,钻井液基浆的泥饼强度提高了63倍,2种钻井液体系的泥饼强度分别提高了16倍和20倍,表明该技术具有广阔的研究前景。

     

  • [1] GU J, YANG B, YANG Y, et al. Impact evaluation of mud cake thickness on shearing strength at cementformation interface[J]. Applied Mechanics and Materials, 2012(166-169):1337-1340.
    [2] 顾军, 高德利, 石凤歧, 等. 论固井二界面封固系统及其重要性[J]. 钻井液与完井液, 2005, 22(2):7-10.

    GU Jun, GAO Deli, SHI Fengqi, et al. The importance of cement-formation interface system[J]. Drilling Fluid and Completion Fluid, 2005, 22(2):7-10.
    [3] LADVA H K J, CRASTER B, JONES T G J, et al. The cement-to-formation interface in zonal isolation[C]. IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. Society of Petroleum Engineers, 2004.
    [4] 杜江. 提高水泥环第二界面胶结质量的固井技术[J]. 石油钻探技术, 1999, 27(1):35-36.

    DU Jiang. A technology to improve cement quality of secondary interface[J]. Drilling Petroleum Techniques, 1999, 27(1):35-36.
    [5] 杨振杰, 叶海超, 龚保强,等. 固井液与多功能钻井液泥饼整体固化胶结的可行性探讨[J]. 钻井液与完井液, 2002, 19(5):1-7.

    YANG Zhenjie, YE Haichao, GONG Baoqiang,et al. Feasibility of integrated solidification and cementation of cementing fluid with mud cake from multifunctional drilling fluid[J]. Drilling Fluid & Completion Fluid, 2002, 19(5):1-7.
    [6] 顾军, 秦文政. MTA方法固井二界面整体固化胶结实验[J]. 石油勘探与开发, 2010(2):226-231. GU Jun, QIN Wenzheng. Consolidation test of cementformation interface by MTA method[J]. Petroleum Exploration and Development, 2010

    (2):226-231.
    [7] 顾军, 杨亚馨, 张鹏伟, 等. MTA防窜固井技术原理及现场应用分析[J]. 石油钻探技术, 2012, 40(1):17-21.

    GU Jun, YANG Yaxin, ZHANG Pengwei, et al. Techniques of MTA to prevent gas channeling and field application[J]. Drilling Petroleum Techniques, 2012, 40(1):17-21.
    [8] 刘铁卜. 钻井液泥饼硬化增强剂:中国, 104119843[P]. 2014-10-29.

    LIU Tiebu. A reinforcing agent of mudcake of drilling fluid:China, 104119843[P]. 2014-10-29.
    [9] 孙立权. 改善固井质量的界面增强剂的研制[D]. 东北石油大学硕士学位论文, 2014. SUN Liquan.Interface strengthening agent to improve cement quality[D]. Northeast Petroleum University Master Thesis, 2014.
    [10] 梅雨堃, 李明, 刘璐, 等. 提高二界面胶结质量的矿渣钻井液滤饼可固化技术[J]. 钻井液与完井液, 2016, 33(1):68-72.

    MEI Yukun, LI Ming, LIU Lu, et al. Solidification of slag mud cake that improves cementation quality of the second bonding interface[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):68-72.
    [11] MUÑIZ-VILLARREAL M S, MANZANO-RAMÍREZ A, SAMPIERI-BULBARELA S, et al. The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer[J]. Materials Letters, 2011, 65(6):995-998.
    [12] 孙淑文. 水玻璃模数的调节与计算[J]. 建井技术, 1984(2):26-29. SUN Shuwen. The calculation and change of the modulus of sodium silicate[J]. Mine Construction Technology, 1984

    (2):26-29.
    [13] COWAN K M, HALE A H, NAHM J J. Conversion of drilling fluids to cements with blast furnace slag:Performance properties and applications for well cementing[C]. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1992.
    [14] SILVA M G P, MIRANDA C R, D'ALMEIDA A R, et al. Slag cementing versus conventional cementing:comparative bond results[C]//Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 1997.
    [15] 段瑜芳, 王培铭, 杨克锐. 碱激发偏高岭土胶凝材料水化硬化机理的研究[J]. 新型建筑材料, 2006(1):22-25. DUAN Yufang, WANG Peiming, YANG Kerui. The research on the hydration process of alkali-activated metakaolin cementitious material[J]. New Building Materials, 2006

    (1):22-25.
    [16] MINGQUAN S, WENLI W, KAIHUA M. Slag MTC techniques solve cementing problems in complex wells[J]. SPE 64758, 2000.
    [17] 王瑞和, 姜林林, 步玉环. 矿渣MTC水化机理实验研究[J]. 石油学报, 2008, 29(3):442-446.

    WANG Ruihe, JIANG Linlin, BU Yuhuan.Experimental study on hydration mechanism of slag MTC[J]. Acta Petrolei Sinica,2008,29(3):442-446.
    [18] 彭志刚. 水硬高炉矿渣MTC固井技术研究[D]. 西南石油学院, 2004. PENG Zhigang. The BFS MTC cementing technology[D]. Southwest Petroleum Institute, 2004.
  • 加载中
计量
  • 文章访问数:  772
  • HTML全文浏览量:  154
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-20
  • 刊出日期:  2017-01-31

目录

    /

    返回文章
    返回