Effect of Nano ZnO on Rheology of CTAC Wormlike Micelle
-
摘要:
纳米材料独特的表面性质可以使材料改性,从而生产出性能优越、满足不同需要的油田化学添加剂。以十六烷基三甲基氯化铵(CTAC)为主要原料,研究了纳米ZnO通过拟交联作用,对CTAC蠕虫状胶束黏度、耐温和降滤失性能的影响,分析了其作用机理。研究结果表明,水杨酸钠与CTAC的物质的量比为1.25:1时,体系形成最大长度的蠕虫状胶束,黏度达到最大;纳米ZnO能够改善CTAC黏弹性胶束溶液的黏度、热稳定性和剪切稳定性,尤其在中低温增黏效果显著,90℃高温时仍有增黏作用,改性体系黏度可以保持在60 mPa·s;优化得出纳米ZnO的质量分数为0.2%时对体系增黏效果最好;具有极高比表面积的纳米ZnO很容易吸附在胶束表面,屏蔽了胶束之间的静电排斥作用,使CTAC胶束形成一种更加稳定的三维网状结构;改性体系符合Maxwell流体模型,是具有单一松弛时间的线性黏弹性流体。
Abstract:The unique surface natures of nano materials make them suitable for modification to produce oilfield chemicals of excellent performance.The optimum ratio is studied that cetyltrimethyl ammonium chloride (CTAC),a clean fracturing fluid additives commonly used in China,to form worm-like micelle with sodium salicylate (NaSal).Nano ZnO was used to modify the property of the worm-like micelle solution through quasi-crosslinking,and the mechanism of nano ZnO in enhancing the viscosity,thermal stability and shearing stability was analyzed.The mass fraction of ZnO needed for the modification was optimized.In laboratory experiments,the viscosity of the micelle solution reached the maximum value at CTAC:NaSal=1.25:1(molar ratio),and so does the length of the micelle.The micelle solution has the best viscosifying performance at 0.2% of ZnO,and the viscosity of the solution is maintained at 60 mPa·s at 90℃,even after long time of shearing and heating.CTAC micelle solution modified with nano ZnO shows elasticity as a whole,and its rheological behavior conforms to Maxwell rheological model,as demonstrated by Cole-Cole fitting.This micellesolution is a linear viscoelastic fluid with single relaxation time.
-
杨振周, 周广才, 卢拥军, 等. 黏弹性清洁压裂液的作用机理与现场应用[J]. 钻井液与完井液, 2005, 22(1):48-50. YANG Zhenzhou, ZHOU Guangcai, LU Yongjun, et al. The mechanism of viscoelastic clean fracturing fluid and its application in oilfield[J].Drilling Fluid & Completion Fluid, 2005, 22(1):48-50. 陈凯, 蒲万芬. 新型清洁压裂液的室内合成及性能研究[J]. 中国石油大学学报(自然科学版),2006,30(3):107-110. CHEN Kai, PU Wanfen. Preparation and capacity testing of a new type clear fracturing fluid[J]. Journal of China University of Petroleum, 2006, 30(3):107-110. 刘新全,易明新,赵金珏,等. 黏弹性表面活性剂(VES) 压裂液[J]. 油田化学, 2001, 18(3):273-277. LIU Xinquan, YI Mingxin, ZHAO Jinyu, et al. Viscoelastic surfactant based fracturing fluids[J].Oilfield Chemistry, 2001, 18(3):273-277. 曹泉, 于丽, 孙立新, 等. 由碳酸钠诱导形成的油酸钠蠕虫状胶束的流变学性质[J]. 化学学报, 2007, 65(17):1821-1825. CAO Quan, YU Li, SUN Lixin, et al. Rheological properties of an anionic wormlike micelle of sodium oleate induced by sodium carbonate[J].Acta Chimica Sinica, 2007, 65(17):1821-1825. 刘俊,郭拥军,刘通义. 黏弹性表面活性剂研究进展[J]. 钻井液与完井液, 2003, 20(3):47-51. LIU Jun, GUO Yongjun, LIU Tongyi.The reseach of viscoelastic surfatants[J]. Drilling Fluid & Completion Fluid, 2003, 20(3):47-51. 卢拥军,方波,房鼎业,等.黏弹想清洁压裂液VES-70工艺性能研究[J]. 油田化学, 2004, 21(2):120-123. LU Yongjun, FANG Bo, FANG Dingye, et al.Performance properties of viscoelastic surfactant VES-70 based fracturing fluid:A laboratory study[J]. Oilfield Chemistry, 2004, 21(2):120-123. 吕芬敏, 危建新, 金建国, 等. 清洁压裂液的研究与应用[J]. 吐哈油气, 2009, 13(1):87. LYU Fenmin, WEI Jianxin, JIN Jianguo, et al.Reseach and application of clean fracturing fluid[J].Tuha Oil & Gas, 2009, 13(1):87. 张永民,郭赞如,张继超,等.智能型蠕虫状胶束体系[J]. 化学进展, 2011, 23(10):2013-2018. ZHANG Yongmin, GUO Zanru, ZHANG Jichao, et al.Smart wormlike micellar systems[J].Progess In Chemistry, 2011, 23(10):2013-2018. 杨珍, 秦文龙, 杨江, 等. 一种阳离子表面活性剂压裂液的研究及应用[J]. 钻井液与完井液,2013,30(6):64-67. YANG Zhen, QIN Wenlong, YANG Jiang, et al.The research and application of cationic gemini surfactant fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2013, 30(6):64-67. YANG J. Viscoelastic wormlike micelles and their applications[J].Current Opinion in Colloid & Interface Science, 2002, 7(5):276-281. 杨江, 秦文龙, 陈军斌, 等. 纳米材料在非常规油气开发中复变流体的应用[J]. 应用化工, 2013, 42(4):717-719. YANG Jiang, QIN Wenlong, CHEN Junbin, et al. Application of nanomaterial in complex fluid of unconventional oil gas exploration[J]. Applied Chemical Industry, 2013, 42(4):717-719. 秦文龙, 张志强, 候宝东, 等. 纳米技术在提高原油采收率方面的应用新进展[J]. 断块油气田, 2013, 20(1):10-13. QIN Wenlong, ZHANG Zhiqiang, HOU Baodong, et al. Advance of nanotechnology application in enhancing oil recovery[J]. Fault-Block & Gas Field, 2013, 20(1):10-13. 柯扬船, 魏光耀. 纳米材料在石油天然气发开中的应用进展[J]. 油田化学, 2008, 25(2):189-192. KE Yangchuan, WEI Guangyao.Application and development of nanomaterials in oil drilling and recovery[J].Oilfield Chemistry, 2008, 25(2):189-192. JAMES B, HUANG T, WOOD W R. The future of fracturing-fluid technology and rates of hydrocarbon recovery[C], SPE 115475, 2008. 罗明良, 贾子龙, 孙厚台, 等. 纳米TiO2改性MES 黏弹性胶束溶液的性能[J]. 石油学报(石油加工), 2012, 28(3):456-462. LUO Mingliang, JIA Zilong, SUN Houtai, et al. Performance of nano-TIO2 modified MES viscoelastic micelle solution[J].ACTA Petrolei sinica(petroleum processing section), 2012, 28(3):456-462. NETTESHEIM F, LIBERATORE W M, HODGDON K T, et al.Influence of nanoparticle addition on the properties of wormlike micellar solutions[J].Langmuir, 2008, 24:7718-7726. CREWS J, HUANG T.Performanceenhancenments of viscoelastic surfactant stimulation fluids with nanoparticles[C]. SPE 113533, 2008. CERWS J B.Internal phase breaker technology for viscoelastic surfactant gelled fluids[C]. SPE 93449, 2005. CREWS J, GOMAA A M. Nanoparticle-associated surfactant micellar fluids:an alternative to crosslinked polymer systems[C].SPE 157055, 2012. -

计量
- 文章访问数: 742
- HTML全文浏览量: 146
- PDF下载量: 250
- 被引次数: 0