Effect of Nano SiO2 on Performance of Saltwater Drilling Fluid
-
摘要: 在油气井钻进过程中,井壁发生缩径和掉块往往是由于泥页岩吸水膨胀导致的。针对这种情况,提出使用纳米二氧化硅封堵泥页岩的纳米级孔喉,从而降低其渗透率、减缓水分侵入的思路。通过测试钻井液的黏度、滤失量和膨胀量,评价了纳米二氧化硅对盐水钻井液性能的影响。室内实验结果表明,纳米二氧化硅改善钻井液性能,必须是在其抗盐的基础上才能实现,即需使用抗盐土配浆;浓度为1%~5% 的纳米二氧化硅通过增加颗粒间的内摩擦力,既而提高了钻井液的黏度,然而纳米二氧化硅材料对于盐浓度比较敏感;纳米二氧化硅颗粒可以沉积在滤饼表面封堵滤纸孔隙,降滤失效果明显,滤失量降低率可达40.2%;其通过封堵黏土的孔隙,起到了抑制黏土吸水膨胀的作用。优选出的二氧化硅最优加量为3%,其抗盐可至12%;综合考虑滤失、膨胀量实验结果和性价比,选定3%NP+4%NaCl+SWM-B 为最优配方。Abstract: Nano SiO2 (silicon dioxide) is proposed to plug the nano sized pore throats in shale formation to retard invasion of filtrate into the formation in contact with drilling fluid, thus avoiding tight hole and borehole collapse. Effect of nano SiO2 on the improvement of drilling fluid properties was evaluated by measuring the viscosity, filter loss of drilling fluid and shale swelling. The results showed that to improve the performance of the drilling fluid, the nano SiO2 used should be resistant to salt contamination. Treatment of the drilling fluid with 1%-5% nano SiO2 increased the viscosity of the fluid by increasing inter-particle friction. On the other hand, the nano SiO2 was sensitive to the concentration of salt. Laboratory experiments at room temperature showed that by adding 3% nano SiO2 into the drilling fluid, it will have the capacity of tolerating salt commination to 12%. Particles of the nano SiO2 can deposite into the filter cake, reducing the filter loss of the drilling fluid (percent reduction of filter loss volume as high as 40.2%). By retarding the invasion of filtrate, nano SiO2 improved the inhibitive capacity of the saltwater drilling fluid. Nano SiO2 remarkably reduced the volume of filter loss of saltwater drilling fluid (salt concentration less than 8%).
-
Key words:
- Nano silicon dioxide /
- Drilling fluid /
- Filtration characteristics /
- Viscosity /
- Swelling property /
-
Manohar Lal. Shale stability, drilling fluid interaction and shale strength[R]. SPE 54356. Eric van Oort. A novel technique for the investigation of drilling fluid induced borehole instability in shales[R]. SPE 28064. Friedheim J,Guo Q,Young S,et al.Testing and evaluation techniques for drilling fluids-shale interaction and shale stability[R]. SPE 11502. 李真祥,王瑞和,高航献.元坝地区超深探井复杂地层固井难点及对策[J]. 石油钻探技术,2010,38(1):20-25. Li Zhenxiang,Wang Ruihe,Gao Hangxian.Technical challenges arising from cementing ultra deep wells in Yuanba area[J].Petroleum Drilling Techniques,2010,38(1): 20-25. 万伟,洛边克哈,陈大钧. 超低密度高强度水钻井液体系的研究[J]. 钻采工艺,2008,31(5):125-128. Wan Wei,Luo Biankeha,Chen Dajun.Research on ultralow density and high strength cement slurry system[J]. Drilling & Production Technology,2008,31(5):125-128. 孙富全,侯薇,靳建洲,等. 超低密度水钻井液体系设计和研究[J]. 钻井液与完井液,2007,24(3):31-34. Sun Fuquan,Hou Wei,Jin Jianzhou,et al.Design and study of ultra-low density cement slurries[J].Drilling Fluid & Completion Fluid,2007,24(3):31-34. 邹才能,朱如凯,白斌,等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报,2011,27(6): 1857-1864. Zou Caineng,Zhu Rukai,Bai Bin,et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica,2011,27(6): 1857-1864. Philip H Nelson.Pore-throat sizes in sandstones,tight sandstones,and shales[J]. AAPG Bulletin,93(3):329-340. Sensoy T,Chenevert E M,Sharma M Mukul. Minimizing water invasion in shales using nanoparticles[A].SPE 124429. 欧哲金. 钻井液在页岩地层中的应用 [J]. 西部探矿工程, 2011(7):39-42. Ou Zhejin. Application of drilling fluid for shale formation drilling [J]. West-China Exploration Engineering,2011(7) 39-42. 乌效鸣,胡郁乐,贺冰新,等. 钻井液与岩土工程浆液 [M]. 武汉:中国地质大学出版社,2002. Wu Xiaoming,Hu Yule,He Bingxin,et al. Drilling fluids and geotechnical engineering grout [M]. Wu Han: China University of geosciences Publisher,2002. -

计量
- 文章访问数: 823
- HTML全文浏览量: 172
- PDF下载量: 239
- 被引次数: 0