留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多缝洞体结构油藏高效沟通酸压工艺优化实验研究

汤晓帆 罗攀登 宋志峰 何正权 罗志锋

汤晓帆,罗攀登,宋志峰,等. 多缝洞体结构油藏高效沟通酸压工艺优化实验研究[J]. 钻井液与完井液,2025,42(6):821-828 doi: 10.12358/j.issn.1001-5620.2025.06.015
引用本文: 汤晓帆,罗攀登,宋志峰,等. 多缝洞体结构油藏高效沟通酸压工艺优化实验研究[J]. 钻井液与完井液,2025,42(6):821-828 doi: 10.12358/j.issn.1001-5620.2025.06.015
TANG Xiaofan, LUO Pandeng, SONG Zhifeng, et al.Experimental study on optimization of acid-fracturing technique for efficient communication of multi-fracture-cavity structure reservoirs[J]. Drilling Fluid & Completion Fluid,2025, 42(6):821-828 doi: 10.12358/j.issn.1001-5620.2025.06.015
Citation: TANG Xiaofan, LUO Pandeng, SONG Zhifeng, et al.Experimental study on optimization of acid-fracturing technique for efficient communication of multi-fracture-cavity structure reservoirs[J]. Drilling Fluid & Completion Fluid,2025, 42(6):821-828 doi: 10.12358/j.issn.1001-5620.2025.06.015

多缝洞体结构油藏高效沟通酸压工艺优化实验研究

doi: 10.12358/j.issn.1001-5620.2025.06.015
详细信息
    作者简介:

    汤晓帆,1993年生,硕士研究生,助理研究员,2020年毕业于中国石油大学(北京)石油与天然气工程专业,主要从事储层改造与酸化压裂测试评价工作。E-mail:1979414208@qq.com

  • 中图分类号: TE357.12

Experimental Study on Optimization of Acid-Fracturing Technique for Efficient Communication of Multi-Fracture-Cavity Structure Reservoirs

  • 摘要: 缝洞型碳酸盐岩储层因缝洞连通复杂、结构多样导致改造困难,现有技术难以实现多缝洞体系高效动用。为此,研制多结构节点流动反应可视化实验装置,采用固体缓速酸开展酸压实验,观测流体路径并分析酸液浓度影响规律,提出以无因次突破体积为判据的优化策略。实验表明:固体缓速酸可减少早中期酸耗,增强远端溶蚀增渗效果并延长支撑缝长;串联缝洞结构适用高浓度酸液,其可快速增压、缩短突破时间且减少用酸量;并联结构酸液优先进入未充填裂缝,高浓度酸液导致充填区流动困难,推荐低浓度酸或“暂堵剂+高浓度酸”复合工艺。研究揭示了酸液在复杂缝洞系统中的流动机制,为非均质碳酸盐岩储层高效改造提供技术支撑。

     

  • 图  1  实验可视化腔体形态

    图  2  装置连接方式示意图

    图  3  固体延迟酸

    图  4  不同浓度固体酸在未充填缝中悬浮性能测试

    图  5  不同浓度固体酸在充填缝中悬浮性能测试

    图  6  不同浓度固体酸在模拟溶洞中悬浮性能测试

    图  7  不同酸液浓度下串联缝洞体结构突破无因次体积

    图  8  多缝洞体串联模式突破小溶洞的酸岩反应情况

    图  9  不同酸液浓度下并联缝洞体结构突破无因次体积

    图  10  多缝洞体并联模式下10%(a)及40%(b)酸液浓度突破充填缝时酸岩反应情况对比

    表  1  不同结构体特征参数

    结构体
    类型
    结构体
    内腔参数
    结构体
    名称
    结构体体积
    参数设置
    长/
    cm
    宽/
    cm
    高/
    cm
    裂缝宽度/
    mm
    孔隙度/
    %
    实际容积/
    mL
    裂缝 20 5 4 未充填缝 3 240
    充填缝 40 160
    溶洞 18 10 10 大溶洞 66 1200
    小溶洞 33 600
    下载: 导出CSV

    表  2  实验岩样全岩分析结果

    序号矿物百分含量/%
    黏土总量石膏石英钾长石斜长石方解石白云石
    10.000.000.140.002.3394.333.20
    20.000.000.500.003.2493.253.00
    下载: 导出CSV
  • [1] 江怀友, 宋新民, 王元基, 等. 世界海相碳酸盐岩油气勘探开发现状与展望[J]. 海洋石油, 2008, 28(4): 6-13.

    JIANG Huaiyou, SONG Xinmin, WANG Yuanji, et al. Current situation and forecast of the world's carbonate oil and gas exploration and development[J]. Offshore Oil, 2008, 28(4): 6-13.
    [2] LUO M M, ZHOU H, LIANG Y P, et al. Horizontal and vertical zoning of carbonate dissolution in China[J]. Geomorphology, 2018, 322: 66-75. doi: 10.1016/j.geomorph.2018.08.039
    [3] 王大鹏, 白国平, 徐艳, 等. 全球古生界海相碳酸盐岩大油气田特征及油气分布[J]. 古地理学报, 2016, 18(1): 80-92.

    WANG Dapeng, BAI Guoping, XU Yan, et al. Characteristics and hydrocarbon distribution of the Paleozoic giant marine carbonate rock oil-gas fields in the world[J]. Journal of Palaeogeography, 2016, 18(1): 80-92.
    [4] LAMONT-BLACK J, YOUNGER P L, FORTH R A, et al. A decision-logic framework for investigating subsidence problems potentially attributable to gypsum karstification[J]. Engineering Geology, 2002, 65(2/3): 205-215.
    [5] ZHANG H, CAI Z X, HAO F, et al. Hypogenic origin of paleocaves in the Ordovician carbonates of the southern Tahe oilfield, Tarim basin, northwest China[J]. Geoenergy Science and Engineering, 2023, 225: 211669. doi: 10.1016/j.geoen.2023.211669
    [6] RABIE A I, NASR-EL-DIN H A. Measuring the reaction rate of lactic acid with calcite using the rotating disk apparatus[C]//SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain: SPE, 2011: SPE 140167-MS.
    [7] SAYED M A, NASR-EL-DIN H A. Reaction rate of emulsified acids and dolomite[C]//SPE International Symposium and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA: SPE, 2012: SPE 151815-MS.
    [8] 刘伟, 刘佳, 刘飞, 等. 高钙质致密油酸岩反应动力学参数试验研究[J]. 石油与天然气化工, 2015, 44(2): 91-95.

    LIU Wei, LIU Jia, LIU Fei, et al. Experimental study on reaction kinetics parameters of tight oil acid rock with high calcium[J]. Chemical Engineering of Oil and Gas, 2015, 44(2): 91-95.
    [9] LUND K, FOGLER H S, MCCUNE C C. Acidization—I. the dissolution of dolomite in hydrochloric acid[J]. Chemical Engineering Science, 1973, 28(3): IN1-691.
    [10] 陈赓良, 黄瑛. 碳酸盐岩酸化反应机理分析[J]. 天然气工业, 2006, 26(1): 104-108.

    CHEN Gengliang, HUANG Ying. An analysis of acidizing reaction mechanism of carbonates[J]. Natural Gas Industry, 2006, 26(1): 104-108.
    [11] 李沁. 高黏度酸液酸岩反应模拟试验新方法探索[D]. 成都: 成都理工大学, 2010.

    LI Qin. Exploration on a new lab method of simulation high-viscosity acid-rock reaction[D]. Chengdu: Chengdu University of Technology, 2010.
    [12] 王雪涛. 缝洞型油藏固体酸深部酸压工艺研究与应用[D]. 青岛: 中国石油大学(华东), 2020.

    WANG Xuetao. Research and application of deep acid fracturing technology of solid acid in fracture vuggy reservoir[D]. Qingdao: China University of Petroleum, 2020.
    [13] 董晓军, 张明, 蒲阳峰, 等. 一种酸压中氢离子有效传质系数的测试装置及测试方法: CN201510091460.4[P]. 2015-02-28.

    DONG Xiaojun, ZHANG Ming, PU Yangfeng, et al. A testing device and method for measuring the effective mass transfer coefficient of hydrogen ions in acid pressure: CN201510091460.4[P]. 2015-02-28.
    [14] 刘飞, 罗志锋, 周长林, 等. 大尺寸岩板测定酸液有效传质系数新方法[J]. 石油与天然气化工, 2019, 48(6): 53-58.

    LIU Fei, LUO Zhifeng, ZHOU Changlin, et al. A new method for testing acid effective mass transfer coefficient based on large scale rock sample[J]. Chemical engineering of oil & gas, 2019, 48(6): 53-58.
    [15] 戴一凡, 侯冰. 碳酸盐岩酸蚀裂缝面粗糙度与导流能力相关性分析[J]. 断块油气田, 2023, 30(4): 672-677.

    DAI Yifan, HOU Bing. Correlation analysis between acid-etched fracture surface roughness and fracture conductivity in carbonate reservoir[J]. Fault-Block Oil and Gas Field, 2023, 30(4): 672-677.
    [16] 夏熙, 牟建业, 张士诚, 等. 大牛地气田复杂岩性储层酸蚀裂缝导流能力规律研究[J]. 断块油气田, 2024, 31(6): 1083-1089.

    XIA Xi, MU Jianye, ZHANG Shicheng, et al. Study on conductivity of acid-etched fractures in complex-lithology reservoir of Daniudi gasfield[J]. Fault-Block Oil and Gas Field, 2024, 31(6): 1083-1089.
    [17] DAVIES D R, BOSMA M G R, DE V W. Development of field design rules for viscous fingering in acid fracturing treatments: a large-scale model study[C]//the Middle East Oil Show. Bahrain: SPE, 1987: SPE 15772-MS.
    [18] 李小刚, 杨兆中, 陈锐, 等. 前置液酸压缝中酸液指进的物模与分形研究[J]. 西南石油大学学报, 2007, 29(6): 105-108.

    LI Xiaogang, YANG Zhaozhong, CHEN Rui, et al. Physical simulation and fractal features of acid fingering in pad acid fracturing treatment[J]. Journal of Southwest Petroleum University, 2007, 29(6): 105-108.
    [19] 罗志锋, 余洋, 赵立强, 等. 多因素下多级交替注入酸液指进实验研究[J]. 油气藏评价与开发, 2018, 8(4): 36-41.

    LUO Zhifeng, YU Yang, ZHAO Liqiang, et al. Multifactorial experiment of acid's fingering phenomenon in the multi-stage alternating injection of acid fracturing[J]. Reservoir Evaluation and Development, 2018, 8(4): 36-41.
    [20] 宋志峰, 张建光. 缝洞型碳酸盐岩靶向酸压目标体分类与建模[J]. 地质科技通报, 2021, 40(3): 78-84.

    SONG Zhifeng, ZHANG Jianguang. Classification and modeling of targeted fracture-cave bodies in acid fracturing[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 78-84.
    [21] 安娜, 罗攀登, 李永寿, 等. 碳酸盐岩储层深度酸压用固体颗粒酸的研制[J]. 石油钻探技术, 2020, 48(2): 93-97.

    AN Na, LUO Pandeng, LI Yongshou, et al. Development of solid granular acid for the deep acid-fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 93-97.
    [22] 刘会锋, 崔龙连, 刘琦, 等. 阿布扎比NEB油田超长水平井限流筛管完井与酸化优化设计[J]. 钻采工艺, 2022, 45(6): 53-58.

    LIU Huifeng, CUI Longlian, LIU Qi, et al. Optimization design of limited entry liner completion and acidizing for ultra-long lateral horizontal wells in NEB oilfield, Abu Dhabi[J]. Drilling & Production Technology, 2022, 45(6): 53-58.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-19
  • 修回日期:  2025-08-21
  • 录用日期:  2025-09-01
  • 网络出版日期:  2025-12-08
  • 刊出日期:  2025-12-08

目录

    /

    返回文章
    返回

    尊敬的作者、读者:

    您好!

    为更好地服务于广大作者和读者,提升期刊编辑部的办公效率和服务质量,本刊编辑部办公地点及联系电话已进行变更。

    新办公地址:天津经济技术开发区第二大街83号中国石油天津大厦A517房间

    新联系电话:022-65278734

                         022-25275527

    我们衷心希望广大作者和读者能够继续支持我们的工作,共同推动期刊的发展和进步。

    再次感谢您对期刊的关注和支持!