Preparation and Application of a Salt- and Shear-Resistant Thickening Agent
-
摘要: 针对常规耐盐稠剂化耐盐能力有限,耐高速剪切能力差,无法满足气田水回用需求等问题,以丙烯酰胺(AM)、对苯乙烯磺酸钠(SSS)、N,N-二乙基丙烯酰胺(DEAM)、烷基二甲基烯丙基氯化铵(CnDMAAC)为聚合单体,通过乳液聚合制备出聚合物稠化剂ASCM,并通过正交实验优化了聚合条件。ASCM耐盐能力达到85 000 mg/L,耐Ca2+、Mg2+能力达到6000 mg/L,在标准盐水中的黏度保持率在80%左右,经2000 s−1高速剪切后,黏度恢复率达90%。气田水配制的1.6%ASCM,在120℃、170 s−1下剪切90 min后黏度在50 mPa·s左右,静态悬砂2 h无沉降,30~120 min可控破胶,破胶液表面张力25~27 mN/m,残渣含量小于200 mg/L,岩心伤害小于25%。开展气田水、返排液回用9井次,累计回用气田水、返排液1.43×104 m3,施工参数、改造效果与清水配制的一致,综合成本节约20%以上。ASCM具有耐剪切、高悬砂、低伤害、低摩阻的特点,满足气田水、返排液等复杂水质规模化回用的需求。Abstract: Conventional salt-resistant thickening agents cannot satisfy the requirement of recycling gas-field waters because of their limited salt resistance and poor high-speed shearing resistance. In this study a polymer thickening agent ASCM was developed to deal with this problem. ASCM is synthesized by emulsion polymerization with these monomers: acrylamide (AM), sodium p-styrenesulfonate (SSS), N,N-diethylacrylamide (DEAM), alkyldimethylally ammonium chloride (CnDMAAC). The synthesis conditions were optimized through orthogonal experiments. ASCM has salt tolerance of 85 000 mg/L and Ca2+ and Mg2+ tolerance of 6 000 mg/L. In standard salt water ASCM has viscosity retention rate of about 80%. After shearing at 2 000 s−1, 90% of the viscosity can be restored. A 1.6%ASCM solution formulated with a gas field water had viscosity of about 50 mPa·s after shearing at 120℃ and 170 s−1 for 90 min. After statically suspending for 2 h, no settlement of sand was found. The gel of the ASCM solution can be broken under control in 30-120 min. The solution after gel breaking had surface tension of 25-27 mN/m, residue content of less than 200 mg/L, and core damage of less than 25%. ASCM fracturing fluid formulated with gas field waters and flowback liquids was used for 9 well times, the accumulated volume of the reused gas field waters and flowback liquids reached 1.43 × 104 m3, the operation parameters and stimulation effects of the fracturing fluid formulated with ASCM were the same with those of the fracturing fluids formulated with fresh water, and the comprehensive cost was saved by more than 20%. ASCM has the characteristics of good shear resistance, high suspending capacity, low formation damage and low friction, satisfying the needs of large-scale reuse of waters with complex water quality, such as gas field waters and flowback fluids.
-
Key words:
- Salt resistant /
- Shear resistant /
- Thickening agent /
- Gas field water /
- Fracturing fluid
-
表 1 优化后的ASCM稠化剂聚合物条件
聚合物单体物质的量比
AM∶SSS∶DEAM∶CnDMAAC乳化剂/% 油水体积比 引发剂/% T/℃ 聚合单体质量浓度/% 8∶0.5∶1∶0.15 7 1∶1~1∶1.2 0.2~0.25 40~50 30 表 2 ASCM在不同水质中的溶解增黏性能
水质类型 加量/% 起黏时间/s η/mPa·s 黏度保持率/% 清水 1.0 20~25 90 1.2 20 114 1.4 20 139 标准盐水 1.0 30 72 80.0 1.2 25~30 93 81.6 1.4 25 111 79.9 气田水 1.0 30~40 69 76.7 1.2 30 90 78.9 1.4 30 109 78.4 注:标准盐水配方[26]:2.0% KCl+5.5% NaCl+0.45% MgCl2+0.55%CaCl2。气田水矿化度35 000 mg/L,Ca2+、Mg2+含量5700 mg/L,Cl−1含量18 300 mg/L。 表 3 ASCM压裂液破胶实验情况
配方 破胶剂/
%t/
minη/
mPa·s残渣量/
mg·L−1表面张力/
mN·m−1清水+1.2%ASCM 0.01~0.02 40~100 2.3 159 25.1 返排液+1.4%ASCM 0.01~0.03 30~120 2.5 174 25.9 气田水+1.6%ASCM 0.01~0.04 30~120 2.7 191 26.5 表 4 不同水质配制ASCM压裂液破胶液的对岩心损害情况
配方 K0/mD Kd/mD 损害率/% 清水+1.2%ASCM 3.04 2.51 17.4 返排液+1.4%ASCM 2.80 2.26 19.3 气田水+1.6%ASCM 3.95 3.05 22.8 表 5 S59-16-XXH2井现场返排液及气田水水质指标
指标 pH Ca2+/
mg·L−1Mg2+/
mg·L−1悬浮物/
mg·L−1Cl−/
mg·L−1矿化度/
mg·L−1返排液 7 601 77 43 91 00 17 600 气田水 7 5 700 129 26 18 300 35 000 表 6 S59-16-XXH2井气田水动态回用方案及优化配方
混合比例/% 矿化度/(mg·L−1) 配方 η/mPa·s 气田水 35 000 (1.5%~1.6%)ASCM+(0.02%~0.04%)破胶剂 120~132 返排液 16 700 (1.3%~1.4%)ASCM+(0.02%~0.03%)破胶剂 108~120 (30%~50%)气田水 11 000~18 000 (1.2%~1.4%)ASCM+(0.01%~0.02%)破胶剂 100~130 (50%~70%)气田水 18 000~25 000 (1.4%~1.5%)ASCM+(0.02%~0.03%)破胶剂 110~130 -
[1] 王礼恒, 董艳辉, 杨春, 等. 页岩气水力压裂开发的环境效应研究进展[J]. 工程地质学报, 2024, 32(4): 1447-1458.WANG Liheng, DONG Yanhui, YANG Chun, et al. 2024. Environmental impacts of shale gas hydraulic fracturing development: a critical review[J]. Journal of Engineering Geology, 2024, 32(4): 1447-1458. [2] 冯翠洋, 赵佳龙, 尹琳琳. 石油开发利用的水资源稀缺性评价研究[J]. 石油科学通报, 2024, 9(5): 841-852.FENG Cuiyang, ZHAO Jialong, YIN Linlin. Water scarcity assessment for oil development and utilization[J]. Petroleum Science Bulletin, 2024, 9(5): 841-852. [3] 王登海, 刘军, 刘银春, 等. 深层煤岩气开发地面工程面临的挑战及对策建议[J]. 天然气工业, 2024, 44(10): 209-217.WANG Denghai, LIU Jun, LIU Yinchun, et al. Surface engineering of deep coal-rock gas development: challenges and solutions[J]. Natural Gas Industry, 2024, 44(10): 209-217. [4] 熊颖, 宋彬, 唐永帆, 等. 基于多级反渗透的页岩气压裂返排液处理技术[J]. 科学技术与工程, 2021, 21(18): 7814-7819.XIONG Ying, SONG Bin, TANG Yongfan, et al. Treatment technology of shale gas fracturing flowback fluids based on multi-stage reverse osmosis process[J]. Science Technology and Engineering, 2021, 21(18): 7814-7819. [5] 刘宏彬. 某气田采出水水质特性及处理现状分析[J]. 油气田地面工程, 2019, 38(8): 55-59,64.LIU Hongbin. Analysis of quality characteristics and treatment status of produced water in one gas field[J]. Oil-Gas Field Surface Engineering, 2019, 38(8): 55-59,64. [6] 王伟, 许可, 张成娟, 等. 耐高矿化度压裂液体系研究进展[J]. 应用化工, 2024, 53(9): 2139-2144.WANG Wei, XU Ke, ZHANG Chengjuan, et al. Research progress of fracturing fluid system with high salinity resistance[J]. Applied Chemical Industry, 2024, 53(9): 2139-2144. [7] 刘怀珠, 赵康宁, 陈东, 等. 滑溜水压裂返排液在钻井液中资源化利用[J]. 钻井液与完井液, 2025, 42(1): 127-133.LIU Huaizhu, ZHAO Kangning, CHEN Dong, et al. Recycling in drilling fluids of flowback fluids from slick water fracturing operation[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 127-133. [8] 蒋继辉, 冀忠伦, 赵敏, 等. 油田井场废水中无机盐对配制压裂液的影响[J]. 石油与天然气化工, 2013, 42(2): 188-191.JIANG Jihui, JI Zhonglun, ZHAO Min, et al. Effects of inorganic salts in well site wastewater on preparation of fracturing fluid[J]. Chemical Engineering of Oil and Gas, 2013, 42(2): 188-191. [9] 李旭晖, 郭丽梅, 管保山, 等. 一种抗盐型丙烯酰胺共聚物的合成与评价[J]. 石油化工, 2017, 46(10): 1313-1318.LI Xuhui, GUO Limei, GUAN Baoshan, et al. Synthesis and evaluation of a kind of salt-resistant acrylamide-based copolymer[J]. Petrochemical Technology, 2017, 46(10): 1313-1318. [10] 李昭滢, 杨旭, 杨杰, 等. 压裂液稠化剂两性聚丙烯酰胺的合成与性能评价[J]. 石油钻探技术, 2023, 51(2): 109-115.LI Zhaoying, YANG Xu, YANG Jie, et al. Synthesis and property evaluation of an amphoteric polymer fracturing fluid thickener[J]. Petroleum Drilling Techniques, 2023, 51(2): 109-115. [11] 王桂芹, 陈涛, 张蕊, 等. 新型耐温抗盐疏水缔合聚合物的制备及性能[J]. 石油化工, 2020, 49(7): 657-663.WANG Guiqin, CHEN Tao, ZHANG Rui, et al. Preparation and performance of a novel hydrophobic associating polymer with excellent temperature-resistance and salt-tolerance[J]. Petrochemical Technology, 2020, 49(7): 657-663. [12] LI L L, ZHANG C Y, CHEN H S, et al. One-pot fabrication of a double tailed hydrophobic monomer and its application in synthesis of salt-resistant polymers[J]. Journal of Molecular Liquids, 2023, 卷缺失: 390. [13] 郑博玄, 周洪涛, 武晓通, 等. 丙烯酰胺类压裂液稠化剂的研究进展[J]. 石油钻采工艺, 2023, 45(4): 499-509.ZHENG Boxuan, ZHOU Hongtao, WU Xiaotong, et al. Research progress on acrylamide fracturing fluid thickeners[J]. Oil Drilling & Production Technology, 2023, 45(4): 499-509. [14] 王金冉, 张百川, 陈宇祺, 等. 耐盐聚丙烯酰胺共聚物稠化剂研究进展(Ⅰ)[J]. 精细石油化工, 2024, 41(2): 63-68.WANG Jinran, ZHANG Baichuan, CHEN Yuqi, et al. Research progress of salt-resistant polyacrylamide copolymer thickening agent(Ⅰ)[J]. Speciality Petrochemicals, 2024, 41(2): 63-68. [15] 俞路遥, 许可, 石阳, 等. 复杂水配制压裂液技术研究进展[J]. 当代化工, 2022, 51(9): 2231-2234,2239.YU Luyao, XU Ke, SHI Yang, et al. Research progress of fracturing fluid preparation technology with complex water[J]. Contemporary Chemical Industry, 2022, 51(9): 2231-2234,2239. [16] 周亚峰, 杨江, 刘海玲, 等. 耐温耐盐两性聚丙烯酰胺稠化剂的制备及其性能[J]. 油田化学, 2024, 41(1): 19-25,60.ZHOU Yafeng, YANG Jiang, LIU Hailing, et al. Preparation and properties of temperature and salt resistant amphoteric polyacrylamide thickener[J]. Oilfield Chemistry, 2024, 41(1): 19-25,60. [17] 方建, 卞凤玲, 赵继华, 等. 聚N, N-二乙基丙烯酰胺低聚物水溶液的分子动力学研究[J]. 高分子学报, 2008(10): 935-940.FANG Jian, BIAN Fengling, ZHAO Jihua, et al. Molecular dynamics simulation of a model oligomer for poly(n, n-diethylacrylamide) in water[J]. Acta Polymerica Sinica, 2008(10): 935-940. [18] 侯向前, 刘庄雷. 季铵盐聚合物在石油工程领域应用研究进展[J]. 化学工程师, 2024, 38(9): 76-80.HOU Xiangqian, LIU Zhuanglei. Research progress of quaternary ammonium polymer in petroleum engineering field[J]. Chemical Engineer, 2024, 38(9): 76-80. [19] 于斌, 潘一, 杨双春, 等. 疏水缔合聚合物压裂增稠剂的研究进展[J/OL]. 精细化工, 2024: 1-15(2024-11-25)[2025-09-10]. DOI: 10.13550/j.jxhg.20240763.YU Bin, PAN Yi, YANG Shuangchun, et al. Research progress of hydrophobic associative polymer fracturing thickeners[J/OL]. Fine Chemicals, 2024: 1-15(2024-11-25) [2025-09-10]. DOI: 10.13550/j.jxhg.20240763. [20] 周柄男, 滕大勇, 丁秋炜, 等. 多功能压裂液稠化剂的合成和性能评价[J]. 精细石油化工, 2024, 41(3): 38-42.ZHOU Bingnan, TENG Dayong, DING Qiuwei, et al. Synthesis and performance evaluation of multifuntionanl fracturing fluid thickener[J]. Speciality Petrochemicals, 2024, 41(3): 38-42. [21] 孙亚东, 李嘉, 于世虎. 一剂多能乳液聚合物压裂液的制备与应用[J]. 石油化工, 2021, 50(4): 325-331.SUN Yadong, LI Jia, YU Shihu. Preparation and application of a multifunctional emulsion polymer as fracturing fluid[J]. Petrochemical Technology, 2021, 50(4): 325-331. [22] 王超, 崔明月, 张旭, 等. 缓速交联超高温合成聚合物压裂液稠化剂研究[J]. 钻井液与完井液, 2022, 39(3): 390-396.WANG Chao, CUI Mingyue, ZHANG Xu, et al. Study on fracturing fluid formulated with ultra-high temperature retarded crosslinking polymers[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 390-396 [23] 罗磊, 王渊, 屈刚, 等. 一体化多功能抗盐稠化剂的研制与应用[J]. 钻井液与完井液, 2022, 39(3): 383-389.LUO Lei, WANG Yuan, QU Gang, et al. The development and application of an integrated multifunctional salt-resistant thickening agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 383-389 [24] 闫杰, 张涵, 郭志杰, 等. 高分子聚合物稠化剂的制备及其压裂液应用性能研究[J]. 钻井液与完井液, 2022, 39(1): 107-113.YAN Jie, ZHANG Han, GUO Zhijie, et al. Preparation of a high molecular weight polymer thickening agent and its use in fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 107-113 [25] 李昭滢, 杨旭, 杨杰, 等. 压裂液稠化剂两性聚丙烯酰胺的合成与性能评价[J]. 石油钻探技术, 2023, 51(2): 109-115.LI Zhaoying, YANG Xu, YANG Jie, et al. Synthesis and property evaluation of a amphoteric polymer fracturing fluid thickener[J]. Petroleum Drilling Techniques, 2023, 51(2): 109-115 [26] SY/T 5107—2016. 水基压裂液性能评价方法[S].SY/T 5107—2016. Performance evaluation method of water-based fracturing fluid[S]. [27] SY/T 7627-2021. 水基压裂液技术要求[S].SY/T 7627-2021. Technical requirements of water-based fracturing fluid[S]. -
下载: