Preparation and Application of an Instant and Quick-Acting Suspending Agent for Well Cementing Prepad Fluids
-
摘要: 目前固井前置液中所使用的悬浮剂结构大多是高分子/纤维素类化合物,其主要优点是具备较强的增稠能力,可提升前置液体系的悬浮性,确保固井施工安全进行。然而这一类物质在水中通常溶胀速度极慢(>3 h),难以迅速发挥增稠悬浮作用。为进一步提升其使用便利性及前置液配制效率,满足固井生产需求,重点进行了固井前置液用悬浮剂的研制,通过优化悬浮剂体系配方,形成各项性能优异的速溶速效型低黏切悬浮剂体系。室内实验发现,该悬浮剂在溶于水后3 min内即可完全溶胀助悬浮,速效性强;漏斗黏度约为42 s,使用便利性突出;悬浮剂加量达到4%~5%时,以其为核心形成的油基/水基钻井液用前置液体系即可抗温200℃以上,前置液上下密度差小于0.03 g/cm3,稳定性优异。前置液在现场试验过程中施工顺利,固井质量优异,说明该体系可提升固井顶替效率,具有较高推广价值。Abstract: Suspending agents presently used in prepad fluids for well cementing are mostly polymer/cellulose compounds. These suspending agents have a major advantage of high thickening ability; they can improve the suspending stability of a prepad fluid, thereby ensuring the safety of well cementing operation. These kinds of suspending agents, on the other hand, generally swell very slowly in water (> 3 h), and are therefore unable to quickly thicken and prepad fluid to improve its suspending stability. Researches have been conducted in an effort to develop a new suspending agent for well cementing prepad fluids. By optimizing the formulae of suspending agents, an instant and quick acting suspending fluid with superior properties has been developed. This suspending agent fluid has low viscosity and low gel strength. Laboratory experimental results show that after being dissolved in water for 3 min, the suspending agent swells completely and the suspending property of the fluid is greatly improved, meaning that the suspending agent has high quick-acting ability. The funnel viscosity of the suspending agent fluid is about 42 sec, meaning that the suspending agent is convenient to use. A prepad fluid formulated with 4%−5% of this suspending agent as the core additive has been used in cementing a well drilled with water-based drilling fluids or oil-based drilling fluids, the suspending agent functioned normally at temperatures of 200℃ or higher. The density difference between the upper part and the lower part of the prepad fluid was less than 0.03 g/cm3, indicating that the prepad fluid had excellent stability. The field operation using the prepad fluid was conducted smoothly and the job quality of the well cementing operation was outstanding, meaning that this prepad fluid formulated with the newly developed suspending agent is able to enhance the displacing efficiency of cement slurries and has higher promotion value.
-
Key words:
- Well cementing /
- Prepad fluid /
- Instant and quick acting /
- Suspending agent
-
表 1 悬浮主剂初筛实验
悬浮
主剂完全溶胀
时间/min△ρ前置液/
g·cm−3悬浮
主剂完全溶胀
时间/min△ρ前置液/
g·cm−3S1 75 0.10 G1 62 0.02 S2 67 0.06 G2 68 0.05 S3 90 0.07 G3 58 0.02 S4 70 0.05 表 2 各因素对G3+K200溶胀时间影响对比实验
G3+K200/
%溶胀时间/min 含水合促进剂 不含水合促进剂 3 2.5 55 4 3.0 60 5 3.5 63 表 3 溶剂与水合促进剂最优加量实验
悬浮主剂 抗温组分 混合溶剂 水合促进剂 FV/
s溶胀
时间/minG3/
%K200/
%异丙醇+
DMF/%聚醚+
磺酸盐/%2.5 0.5 10 20 >60 15.0 2.5 0.5 12 16 57 9.0 2.5 0.5 15 12 51 4.0 2.5 0.5 18 10 47 3.5 2.5 0.5 20 8 42 2.5 2.5 0.5 22 6 40 5.5 2.5 0.5 22 8 40 3.0 2.5 0.5 20 <40 >120 表 4 水基钻井液用前置液流变数据
ρ/
g·cm−3六速
读数Gel/
Pa/PaPV/
mPa·sYP/
Pa临界紊流
返速/(m·s−1)1.20 24/17/14/10/4/3 2.0/2.0 7 5.0 0.79 1.40 29/21/18/12/6/5 3.0/3.5 8 6.5 0.86 1.60 40/29/33/16/8/7 3.5/4.0 11 9.0 0.91 1.80 61/44/36/26/10/8 4.5/6.0 17 13.5 1.01 表 5 油基钻井液用前置液流变数据
ρ/
g·cm−3六速
读数Gel/
Pa/PaPV/
mPa·sYP/
Pa临界紊流
返速/(m·s−1)1.20 28/21/17/12/3/2 2/2.5 7 7 0.83 1.40 38/26/21/15/5/4 2/3.0 12 7 0.92 1.60 52/36/29/20/6/5 3/4.0 16 10 0.95 1.80 76/52/41/28/8/6 4/5.0 24 14 1.02 表 6 水基钻井液用前置液稳定性评价
前置液原始
密度/(g·cm−3)23℃静置24 h
上下密度/(g·cm−3)200℃静置4 h
上下密度/(g·cm−3)1.20 1.19 1.20 1.19 1.21 1.40 1.39 1.40 1.39 1.40 1.60 1.60 1.60 1.59 1.61 1.80 1.79 1.80 1.80 1.80 表 7 油基钻井液用前置液稳定性评价
前置液原始
密度/(g·cm−3)23℃静置24 h
上下密度/(g·cm−3)200℃静置4 h
上下密度/(g·cm−3)1.20 1.20 1.20 1.19 1.21 1.40 1.40 1.40 1.39 1.41 1.60 1.59 1.60 1.59 1.60 1.80 1.80 1.80 1.79 1.81 表 8 1.50 g/cm3水基钻井液用前置液与水基钻井液、水泥浆的相容性实验数据
混合体积百分比 φ600 φ300 φ200 φ100 φ6 φ3 100%前置液 34 24 19 14 7 5 100%钻井液 84 55 31 19 8 6 100%水泥浆 174 92 68 40 8 5 95%钻井液+5%前置液 82 54 30 18 8 6 75%钻井液+25%前置液 72 47 28 18 8 6 50%钻井液+50%前置液 59 39 25 17 7 5 50%前置液+50%水泥浆 104 58 44 27 8 5 25%前置液+75%水泥浆 139 75 56 34 8 5 5%前置液+95%水泥浆 167 89 66 39 8 5 表 9 1.65 g/cm3油基钻井液用前置液与油基钻井液、水泥浆的相容性实验数据
混合体积百分比 φ600 φ300 φ200 φ100 φ6 φ3 100%前置液 56 39 32 22 6 5 100%钻井液 108 68 54 37 12 11 100%水泥浆 174 92 68 40 8 5 95%钻井液+5%前置液 105 67 53 36 12 11 75%钻井液+25%前置液 95 61 48 33 11 9 50%钻井液+50%前置液 82 54 43 29 9 8 50%前置液+50%水泥浆 115 66 50 31 7 5 25%前置液+75%水泥浆 145 79 59 36 8 5 5%前置液+95%水泥浆 168 89 66 39 8 5 表 10 针对水基钻井液的冲洗性能评价
水基钻井液来源 Gel/(Pa/Pa) PV/mPa·s YP/Pa t冲净/min BQ 3/11 35 13 2.5 MKB 2/7 35 17 2.0 DQ 2/5 54 12 1.7 表 11 针对油基钻井液的冲洗性能评价
冲洗剂/% FV/s Gel/(Pa/Pa) ES/V t冲净/min 3.5 60 7/16 850 4.0 5.0 3.0 3.5 67 10/23 1200 7.0 5.0 5.0 -
[1] 卢海川, 朱海金, 李宗要, 等. 水泥浆悬浮剂研究进展[J]. 油田化学, 2014, 31(2): 307-311.LU Haichuan, ZHU Haijin, LI Zongyao, et al. Review on suspending agents for cement slurry[J]. Oilfield Chemistry, 2014, 31(2): 307-311. [2] 武磊, 赵宝辉, 侯薇, 等. 油井水泥悬浮剂的研究进展[J]. 油田化学, 2023, 40(4): 736-742.WU Lei, ZHAO Baohui, HOU Wei, et al. Research progress of oil well cement suspension[J]. Oilfield Chemistry, 2023, 40(4): 736-742. [3] 孙德易, 李化建, 易忠来, 等. 增稠剂对新拌水泥基材料性能影响的研究进展[J]. 混凝土与水泥制品, 2018(1): 17-21. doi: 10.3969/j.issn.1000-4637.2018.01.004SUN Deyi, LI Huajian, YI Zhonglai, et al. Research progress on the effects of thickeners on the properties of newly mixed cement-based materials[J]. China Concrete and Cement Products, 2018(1): 17-21. doi: 10.3969/j.issn.1000-4637.2018.01.004 [4] 杨文秀, 赵青林, 周明凯, 等. 复合增稠剂对大流态薄层砂浆性能的影响及其抗裂机理[J]. 硅酸盐通报, 2023, 42(6): 1938-1949.YANG Wenxiu, ZHAO Qinglin, ZHOU Mingkai, et al. Effect of composite thickener on performance of large-flow thin layer mortar and its anti-cracking mechanism[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 1938-1949. [5] DOAN A A, KELLUM M G, DIGHE S S, et al. Method of using resin coated sized particulates as spacer fluid: US 10767098 B2[P]. 2020-09-08. [6] 张清, 徐明, 钟福海, 等. 高温悬浮稳定剂DRY-S2的研究及应用[J]. 钻井液与完井液, 2013, 30(3): 61-63. doi: 10.3969/j.issn.1001-5620.2013.03.018ZHANG Qing, XU Ming, ZHONG Fuhai, et al. Research and application of high temperature suspension stabilizer DRY-S2[J]. Drilling Fluid & Completion Fluid, 2013, 30(3): 61-63. doi: 10.3969/j.issn.1001-5620.2013.03.018 [7] 罗敏, 黄盛, 何旭晟, 等. 耐 200℃ 固井水泥用悬浮剂的制备与性能表征[J]. 钻井液与完井液, 2022, 39(4): 472-480.LUO Min, HUANG Sheng, HE Xusheng, et al. The preparation and performance characterization of a cement suspending agent resistant to 200℃[J].Drilling Fluid & Completion Fluid, 2022, 39(4): 472-480. [8] 刘湘华. 油井水泥浆高温悬浮稳定剂的开发及性能研究[J]. 钻井液与完井液, 2019, 36(5): 605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014LIU Xianghua. Development of and study on a high temperature suspension stabilizer for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014 [9] 李小江, 周仕明, 魏浩光, 等. 抗高温固井用隔离液及其制备方法与应用: CN202010996468.6[P]. 2020-09-21.LI Xiaojiang, ZHOU Shiming, WEI Haoguang, et al. Isolation fluid for high-temperature cementing and its preparation method and application: CN 202010996468.6[P]. 2020-09-21. [10] 王有伟, 冯颖韬, 张浩, 等. 抗高温水基隔离液体系的研制与评价[J]. 石油化工应用, 2023, 42(8): 19-23,60. doi: 10.3969/j.issn.1673-5285.2023.08.005WANG Youwei, FENG Yingtao, ZHANG Hao, et al. Development and evaluation of high temperature resistant water-based spacer fluid system[J]. Petrochemical Industry Application, 2023, 42(8): 19-23,60. doi: 10.3969/j.issn.1673-5285.2023.08.005 [11] 齐奔, 林志辉, 刘文明, 等. 耐高温抗盐高密度隔离液及其制备方法: CN201710442568.2[P]. 2017-06-13.QI Ben, LIN Zhihui, LIU Wenming, et al. High temperature and salt resistant high-density isolation fluid and its preparation method: CN 201710442568.2[P]. 2017-06-13. [12] 于永金, 靳建洲, 夏修建, 等. 一种固井用高温隔离液悬浮稳定剂及其制备方法与应用: CN 201510329174.7[P]. 2015-06-15.YU Yongjin, JIN Jianzhou, XIA Xiujian, et al. A high-temperature isolation fluid suspension stabilizer for cementing and its preparation method and application: CN 201510329174.7[P]. 2015-06-15. [13] 吕斌, 徐明, 靳建洲, 等. 一种复合型抗高温冲洗隔离液悬浮剂及其制备方法与应用: 国家缺失, 202111648639.7[P]. 2021-12-29.LYU Bin, XU Ming, JIN Jianzhou, et al. A composite high-temperature resistant flushing isolation suspension and its preparation method and application: CN 202111648639.7[P]. 2021-12-29. [14] BROUILLETTE F, RYAN C. Cement stabilization of soils using a proportional cement slurry: US 7993451 B2[P]. 2019-08-09. [15] 陶谦, 杜晓雨, 陆沛青, 等. 固井隔离液组合物, 固井隔离液及其制备方法与应用: CN 202010978748.4[P]. 2020-09-17.TAO Qian, DU Xiaoyu, LU Peiqing, et al. Cementing isolation fluid composition, cementing isolation fluid and its preparation method and application: CN 202010978748.4[P]. 2020-09-17. [16] 林子旸. 用于泥页岩隔离液悬浮稳定剂的优选[J]. 当代化工, 2017, 46(7): 1322-1325. doi: 10.3969/j.issn.1671-0460.2017.07.012LIN Ziyang. Optimal selection of suspension stabilizer for slate separation[J]. Contemporary Chemical Industry, 2017, 46(7): 1322-1325. doi: 10.3969/j.issn.1671-0460.2017.07.012 [17] 张浩, 李厚铭, 符军放, 等. 固井用悬浮稳定剂SS-10L的研究应用[J]. 科学技术与工程, 2015, 15(3): 212-215,219. doi: 10.3969/j.issn.1671-1815.2015.03.041ZHANG Hao, LI Houming, FU Junfang, et al. Research and application of cementing suspension stabilizer SS-10L[J]. Science Technology and Engineering, 2015, 15(3): 212-215,219. doi: 10.3969/j.issn.1671-1815.2015.03.041 [18] 李小林, 刘文明, 闫振峰, 等. 一种抗污染清洗型隔离液: CN201910204422.3[P]. 2019-03-18.LI Xiaolin, LIU Wenming, YAN Zhenfeng, et al. A pollution resistant cleaning isolation liquid and its preparation method: CN 201910204422.3[P]. 2019-03-18. [19] 姜涛, 谌德宝, 肖海东, 等. 表面活性剂为悬浮剂的双效固井前置液: CN 201310110182.3[P]. 2013-04-01.JIANG Tao, CHEN Debao, XIAO Haidong, et al. Dual effect pre cementing fluid with surfactant as suspension agent: CN 201310110182.3[P]. 2013-04-01. [20] 卢海川, 邢秀萍, 谢承斌, 等. 新型固井悬浮剂的开发[J]. 钻井液与完井液, 2014, 31(1): 60-63. doi: 10.3969/j.issn.1001-5620.2014.01.017LU Haichuan, XING Xiuping, XIE Chengbin, et al. Development of a new type of cementing suspension agent[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 60-63. doi: 10.3969/j.issn.1001-5620.2014.01.017 [21] 孙洪波, 马春旭, 刘孟慧, 等. 掺生物胶固井水泥浆性能研究[J]. 科技视界, 2017(9): 244-245. doi: 10.3969/j.issn.2095-2457.2017.09.193SUN Hongbo, MA Chunxu, LIU Menghui, et al. Study on performance of cement slurry mixed with biological adhesives[J]. Science & Technology Vision, 2017(9): 244-245. doi: 10.3969/j.issn.2095-2457.2017.09.193 [22] 文招军. 隔离液与钻井液、水泥浆流变相容性评价方法[J]. 山东化工, 2022, 51(5): 138-140. doi: 10.3969/j.issn.1008-021X.2022.05.041WEN Zhaojun. Evaluation method for rheological compatibility of isolation fluid with drilling fluid and cement mud[J]. Shandong Chemical Industry, 2022, 51(5): 138-140. doi: 10.3969/j.issn.1008-021X.2022.05.041 [23] 辜涛, 郑有成, 郑友志, 等. 固井前置液冲洗效率评价方法——改进的旋转黏度计法[J]. 天然气工业, 2020, 40(11): 120-126. doi: 10.3787/j.issn.1000-0976.2020.11.014GU Tao, ZHENG Youcheng, ZHENG Youzhi, et al. A method for evaluating the flushing efficiency of cementing preflush: An improved rotary viscometer method[J]. Natural Gas Industry, 2020, 40(11): 120-126. doi: 10.3787/j.issn.1000-0976.2020.11.014 -
下载: