Low Thermal Conductivity Cement Slurry for Geothermal Well Cementing
-
摘要: 地热能开发中,水泥环热损失是影响采热效率的关键因素。以G级油井水泥为基体,采用空心玻璃微珠和改性坡缕石纤维为复合低导热材料,通过配方优化,形成了低导热水泥浆体系,并进行了流变性、稳定性、导热能力和抗压能力等测试,导热系数比常规水泥下降了74.4%,7 d抗压强度为19.7 MPa,复合低导热材料的加入使得材料内部孔隙分布更小、更均匀,不仅降低了材料的导热系数,而且提高了其力学性能和耐久性,可降低系统热损失,提高地热能的采出效率。Abstract: In geothermal energy development, the heat loss of cement sheath plays a key role in affecting heat extraction efficiency. In this study, using class G cement as the base slurry, and hollow glass microspheres and modified palygorskite fiber as composite low thermal conductivity material, a low thermal conductivity cement slurry was formulated through composition optimization. Laboratory experiments on the rheology, stability, thermal conductivity and compressive strength of the cement slurry were all tested. It was found that compared with conventional cement slurries, the thermal conductivity of this cement slurry is reduced by 74.4%, and the 7-d compressive strength of this cement slurry is 19.7 MPa. The use of the low thermal conductivity agents in this cement slurry makes the pores inside the set cement finer and more evenly distributed. This not only reduces the thermal conductivity of the cement; it also improves the mechanical performance and durability of the cement. This technology can be used to reduce the heat loss and enhance the efficiency of geothermal extraction.
-
表 1 空心玻璃微珠优选
空心玻璃
微珠真实密度/
g·cm−3p/
MPaD50/
μm耐压密度差/
g·cm−3HL30 0.28~0.32 10 55 0.22 HL40 0.38~0.42 28 40 0.14 HL42 0.40~0.44 55 40 0.02 HL46 0.44~0.48 41 40 0.06 表 2 改性前后坡缕石结构特征对比
坡缕石 比表面积/
m2·g−1平均孔径/
nm孔隙率/
%层间距/
Å表面基团 ζ/
mV接触角/(°) Pb2+浓度/
mg·g−1水中分散性 原始坡缕石 80~120 3~5 40~45 ~10.5 Si—OH
(3620 cm−1)−25 20(超亲水) 30 易团聚,沉降快 酸活化坡缕石 160~320 5~8 60~65 ~10.5 Si—OH增强,
杂质峰消失−35 25(亲水) 70 悬浮稳定性提高,
2 h不沉降表 3 不同水泥浆配方对导热系数和抗压强度的影响
配方 导热系数/
W·(m·K)−1p/
MPa配方 导热系数/
W·(m·K)−1p/
MPa配方 导热系数/
W·(m·K)−1p/
MPa1# 0.61 17.8 4# 0.44 16.8 7# 0.34 13.5 2# 0.54 17.1 5# 0.35 12.2 8# 0.32 16.2 3# 0.33 13.3 6# 0.46 16.7 9# 0.33 11.5 表 4 水泥浆体系抗压强度测试结果
水泥石 p1 d/MPa p2 d/MPa p7 d/MPa 常规水泥石 15.8 20.9 29.5 低导热水泥石 11.2 16.2 19.7 表 5 低导热水泥浆的游离液和API失水量测试结果
T/℃ FLAPI/mL 游离液/mL 20 9 0 50 13 0 70 18 0 90 23 0 95 29 0 表 6 低导热水泥石上下密度差
水泥石 空气中质量mi/g 水中质量mi,w/g 相对密度/(g·cm−3) 1# 21.60 18.62 1.360 2# 23.59 20.41 1.354 3# 22.87 19.73 1.359 4# 22.21 19.13 1.361 表 7 水泥石孔隙结构参数
水泥石 孔隙率/
%总孔面积/
m2·g−1中值孔径/
nm平均孔径/
nm常规 41.25 21.372 32.86 57.39 低导热 62.97 183.897 14.69 17.81 -
[1] WANG K, YUAN B, JI G M, et al. Acomprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of Petroleum Science and Engineering, 2018, 168: 465-477. doi: 10.1016/j.petrol.2018.05.012 [2] 自然资源部中国地质调查局. 中国地热能发展报告-2018[M]. 北京: 中国石化出版社, 2018.China Geological Survey, Ministry of Natural Resources. China Geothermal Energy Development Report-2018[M]. Beijing: China Petrochemical Press, 2018. [3] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9. [4] 李晓益, 何汉平, 段友智, 等. 砂岩孔隙型地热井提高热效工艺分析[J]. 石油钻采工艺, 2017, 39(4): 484-490.LI Xiaoyi, HE Hanping, DUAN Youzhi, et al. Analysis on the thermal efficiency improvement process for geothermal well in porous sandstone[J]. Oil Drilling & Production Technology, 2017, 39(4): 484-490. [5] WON J, CHOI H J, LEE H, et al. Numerical investigation on the effect of cementing properties on the thermal and mechanical stability of geothermal wells[J]. Energies, 2016, 12(9): 1016. [6] 李根生, 武晓光, 宋先知, 等. 干热岩地热资源开采技术现状与挑战[J]. 石油科学通报, 2022, 7(3): 343-364.LI Gensheng, WU Xiaoguang, SONG Xianzhi, et al. Status and challenges of hot dry rock geothermal resource exploitation[J]. Petroleum Science Bulletin, 2022, 7(3): 343-364. [7] 张弛, 翟显治, 杨淯琨, 等. 地热井固井用导热与保温水泥研究进展[J]. 水泥, 2025(1): 5-8.ZHANG Chi, ZHAI Xianzhi, YANG Yukun, et al. Research progress of thermal conductivity and thermal insulation cement for cementing geothermal wells[J]. Cement, 2025(1): 5-8. [8] 王建龙, 马兵, 安巧霞, 等. 轻质漂珠对HPMC/水泥基复合多孔保温材料性能的影响[J]. 硅酸盐通报, 2024, 43(5): 1840-1849.WANG Jianlong, MA Bing, AN Qiaoxia, et al. Effects of lightweight FACs on properties of HPMC/Cement-Based composite porous thermal insulation materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1840-1849. [9] 庞洁, 李特, 魏炳乾. HEC取代水泥对玻璃纤维再生混凝土力学性能的影响[J]. 粉煤灰综合利用, 2023, 37(1): 53-57,125.PANG Jie, LI Te, WEI Bingqian. Influence of HEC replacement rate on mechanical properties of glass fiber recycled concrete[J]. Fly Ash Comprehensive Utilization, 2023, 37(1): 53-57,125. [10] 嵇鹰, 樊帅, 薛宇泽, 等. 玻璃微珠/珍珠岩/稻壳灰对固井水泥性能影响[J]. 非金属矿, 2023, 46(1): 1-5.JI Ying, FAN Shuai, XUE Yuze, et al. Study on the effect of glass beads/expanded perlite/rice husk ash on the performance of oil well cement[J]. Non-Metallic Mines, 2023, 46(1): 1-5. [11] 彭罗文, 艾明星, 石永, 等. 影响二氧化硅气凝胶/玻化微珠保温砂浆性能的因素[J]. 新型建筑材料, 2018, 45(7): 64-67.PENG Luowen, AI Mingxing, SHI Yong, et al. Factors affecting properties of silica aerogel/vitrified bead thermal insulation mortar[J]. New Building Materials, 2018, 45(7): 64-67. [12] 张丰琰, 李立鑫, 代晓光, 等. 地热井保温水泥导热系数影响因素研究[J]. 太阳能学报, 2023, 44(9): 493-502.ZHANG Fengyan, LI Lixin, DAI Xiaoguang, et al. Research on influencing factors of thermal conductivity of thermal insulation cement for geothermal well[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 493-502. [13] 张丰琰, 李立鑫, 韩丽丽. 保温水泥在中低温地热井中的应用及建议[J]. 地质与勘探, 2022, 58(2): 410-419.ZHANG Fengyan, LI Lixin, HAN Lili. Application and suggestions of the thermal insulation cement in Mid-Low temperature geothermal wells[J]. Geology and Exploration, 2022, 58(2): 410-419. [14] 党冬红, 刘宁泽, 王丹, 等. 干热岩工况下水泥高温劣化性能的调控措施[J]. 钻井液与完井液, 2023, 40(3): 368-375.DANG Donghong, LIU Ningze, WANG Dan, et al. Control measures of cement high-temperature deterioration performance under dry-hot rock conditions [J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 368-375. [15] 肖京男, 李小江, 周仕明, 等. 干热岩超高温防衰退水泥浆体系及应用[J]. 钻井液与完井液, 2024, 41(1): 92-97.XIAO Jingnan, LI Xiaojiang, ZHOU Shiming, et al. Ultra-high temperature resistant cement slurry and its application in hot dry rock[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 92-97. [16] 曹灶开, 谭慧静, 廖麟祥, 等. 表面改性玻化微珠增强地热保温固井水泥研究[J]. 钻探工程, 2024, 51(S1): 202-207.CAO Zaokai, TAN Huijing, LIAO Linxiang, et al. Research on surface modified vitrified microbeads for enhanced geothermal insulation cement[J]. Drilling Engineering, 2024, 51(S1): 202-207. [17] 陈海杰, 严捍东. 漂珠、珠光砂对玻化微珠保温砂浆性能影响的试验研究[J]. 福建建设科技, 2011(6): 36-38.CHEN Haijie, YAN Handong. Experimental research on the influence of hollow cenospheres and perlite to thermal insulation mortar with vitrified beads[J]. Fujian Construction Science & Technology, 2011(6): 36-38. -
下载: