Technologies for Lost Circulation Control in Deep Coalbed Methane Drilling in the East of the Junggar Basin
-
摘要: 针对新疆准噶尔盆地东部深层煤岩气钻井中因储层承压能力不足导致的钻井液漏失等问题,根据现场井漏特征,结合矿物组成分析与微观电镜扫描,揭示了裂缝扩展与孔隙连通主导的漏失机理,并提出“封堵剂+降滤失剂+抑制剂”多元协同防漏技术对策。基于“降本增效”原则,优选出钻井液关键处理剂的添加剂用量,并通过正交实验优化复配组合,与基础体系结合形成4种防漏钻井液体系,渗透率恢复率作为核心评价指标,筛选出储层保护最佳的防漏钻井液体系。实验结果表明:该防漏钻井液体系的流变性能稳定,渗透率恢复率可达87.42%,中压和高温高压滤失量分别为4.16 mL 和 9.52 mL,砂床滤失量低于15 mL,封堵效果显著,岩屑膨胀率仅为0.96%,岩屑回收率高达91.6%,抑制性能优良。现场应用结果表明,优化后的防漏钻井液井漏事故明显减少,钻井周期缩短,复杂工况降低,储层保护效果提升,为深层煤岩气的安全、高效钻井提供了重要的技术支撑与应用参考。Abstract: Lost circulation in reservoir drilling has been encountered in deep coalbed methane drilling in the east of Junggar Basin (Xinjiang) because the reservoir formations have insufficient pressure bearing capacity. Based on the characteristics of the lost circulation encountered, the mineral composition of the reservoir formations was analyzed and the morphology of the formations observed using SEM. The mechanisms of lost circulation were determined to be the extension of fractures and the connection of pores in the formations, and a countermeasure for overcoming the lost circulation problem was presented as the synergistic application of “plugging agent + filtration agent + shale inhibitor”. Based on the “reduce costs and increase efficiency” principle, the concentrations of the key drilling fluid additives were optimized. The key additives were then formulated through orthogonal experiment with the basic slurry to form four lost circulation prevention drilling fluids. The four drilling fluids were then tested for their performance in permeability recovery and based on the results, a drilling fluid with the best reservoir protection was determined. Experimental results show that this drilling fluid has stable rheology, the percent permeability recovery can be as high as 87.42%, the API and HTHP filtration rates are 4.16 mL and 9.52 mL, respectively, the filtration rate on sand-bed test is less than 15 mL, indicating that the drilling fluid has good plugging capacity. In inhibitive capacity experiments, the rate of swelling of drilled cuttings tested with the filtrate of the drilling fluid is only 0.96%, and the percent cuttings recovery in hot rolling test with the drilling fluid is as high as 91.6%, indicating that the drilling fluid has excellent inhibitive capacity. In field application of the optimized drilling fluid, lost circulation was mitigated, drilling time shortened, complex working conditions minimized, and reservoirs were protected more effectively. The use of the optimized drilling fluid has provided an important technical support and application reference to safe and efficient drilling of deep coalbed methane.
-
表 1 在基浆中加入不同钻井液抑制剂单剂的优选结果
抑制剂 浓度/
%膨胀量/
mm回收率/
%抑制
剂浓度/
%膨胀量/
mm回收率/
%PMHA-2 0.4 0.21 78.0 铵盐 0.2 0.22 75.0 0.5 0.18 80.0 0.3 0.21 77.2 0.6 0.17 81.0 0.4 0.20 77.6 0.7 0.16 81.2 0.5 0.19 78.2 KCl 3.0 0.20 75.0 KCl 5 0.18 77.6 4.0 0.19 77.6 6 0.18 78.2 表 2 抑制剂复配组合正交设计表
配方 PMHA-2/
%铵盐/
%KCl/
%配方 PMHA-2/
%铵盐/
%KCl/
%1# 0 0 0 6# 0.5 0.4 0 2# 0 0.3 4 7# 0.6 0 5 3# 0 0.4 5 8# 0.6 0.3 0 4# 0.5 0 4 9# 0.6 0.4 4 5# 0.5 0.3 5 表 3 钻井液封堵剂单剂优选结果
添加剂 在不同加量下的滤失量/mL 1% 2% 3% 4% 5% 6% CaCO3 20.2 19 18.7 18.5 18.4 KH-n 19.6 16.5 15.0 14.8 14.5 KR-n 21.5 20.4 18.3 16.0 14.6 14.3 表 4 封堵剂复配组合正交设计表
配方 CaCO3/
%KH-n/
%KR-n/
%配方 CaCO3/
%KH-n/
%KR-n/
%1# 0 0 0 6# 1 3 0 2# 0 2 4 7# 2 0 5 3# 0 3 5 8# 2 2 0 4# 1 0 4 9# 2 3 4 5# 1 2 5 表 5 钻井液降滤失剂单剂优选结果
降滤失剂 加量/% FL/mL 降滤失剂 加量/% FL/mL SP-8 0.3 13.3 HY-2 0.5 18.0 0.4 10.6 1.0 15.8 0.5 9.6 1.5 13.1 0.6 9.3 2.0 11.8 0.7 9.1 2.5 11.3 3.0 10.9 表 6 降滤失剂复配组合正交设计表
配方 SP-8/% HY-2/% 配方 SP-8/% HY-2/% 1# 0.4 1.5 3# 0.4 2.0 2# 0.5 2.0 4# 0.5 1.5 表 7 防漏钻井液体系主要添加剂
防漏钻井液 KR-n/% KH-n/% CaCO3/% SP-8/% HY-2/% KCl/% 铵盐/% PMHA-2/% 1# 5 3 0.4 2.0 5 0.3 0.5 2# 4 3 2 0.4 2.0 5 0.6 3# 5 3 0.5 1.5 5 0.6 4# 4 3 2 0.5 1.5 5 0.3 0.5 注:基础钻井液:4%膨润土+0.2%Na2CO3+0.3%NaOH+0.2%黄原胶+0.2%ABSN+2%WRF-9+2%液体润滑剂+重晶石。 表 8 防漏钻井液渗透率恢复实验结果
防漏
钻井液K/mD 恢复率/
%平均值/
%浸泡前 浸泡后 1# 0.02 0.015 78.00 80.25 0.12 0.099 82.50 2# 0.11 0.091 82.73 85.36 0.15 0.132 88.00 3# 3.29 2.802 85.11 87.42 6.24 5.604 89.74 4# 0.12 0.095 79.17 81.50 0.34 0.285 83.82 表 9 钻井液体系流变性能对比测试
钻井液体系 AV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
Pa /mPa·sφ6 φ3 现场钻井液 33.0 24 9.0 0.38 12.3 9.5 3#防漏钻井液 42.5 35 9.5 0.29 21.0 18.0 表 10 钻井液的抑制性能评价
钻井液 滚动回收率/% 岩屑膨胀率/% 现场钻井液 84.2 1.30 3#防漏钻井液 91.6 0.96 -
[1] 张宇, 赵培荣, 刘士林, 等. 中国石化“十四五”主要勘探进展与发展战略[J]. 中国石油勘探, 2024, 29(1): 14-31. doi: 10.3969/j.issn.1672-7703.2024.01.002ZHANG Yu, ZHAO Peirong, LIU Shilin, et al. Main exploration progress and development strategy of Sinopec during the 14th five-year plan period[J]. China Petroleum Exploration, 2024, 29(1): 14-31. doi: 10.3969/j.issn.1672-7703.2024.01.002 [2] 冯义, 任凯, 刘俊田, 等. 深层煤层气水平井安全钻井技术[J]. 钻采工艺, 2024, 47(3): 33-41.FENG Yi, REN Kai, LIU Juntian, et al. Safe drilling technology for deep CBM horizontal wells[J]. Drilling & Production Technology, 2024, 47(3): 33-41. [3] 孙钦平, 赵群, 姜馨淳, 等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报, 2021, 46(1): 65-76.SUN Qinping, ZHAO Qun, JIANG Xinchun, et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society, 2021, 46(1): 65-76. [4] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130.XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos basin[J]. Coal Geology & Exploration, 2023, 51(1): 115-130. [5] 吴代国. 钻井液用抑制剂研究现状及发展趋势[J]. 西部探矿工程, 2023, 35(12): 41-43,46.WU Daiguo. Research status and development trend of inhibitors for drilling fluids[J]. West-China Exploration Engineering, 2023, 35(12): 41-43,46. [6] 朱金勇, 侯淑鹏, 陈礼仪, 等. 煤层气钻探低密度钻井液物/化协同降滤失研究[J]. 煤炭科学技术, 2016, 44(9): 122-126,160.ZHU Jinyong, HOU Shupeng, CHEN Liyi, et al. Study on physical and chemical coordinative depressing filter loss of low density drilling fluid for coalbed methane drilling exploration[J]. Coal Science and Technology, 2016, 44(9): 122-126,160. [7] 李恒, 何世明, 汤明, 等. 塔里木盆地深部煤层失稳机理及防塌钻井液技术[J]. 煤田地质与勘探, 2019, 47(4): 212-218.LI Heng, HE Shiming, TANG Ming, et al. Instability mechanism and anti-sloughing drilling fluid technique for deep coal seam of Tarim basin[J]. Coal Geology & Exploration, 2019, 47(4): 212-218. [8] 李益寿. 柯193井井壁稳定钻井液技术应用研究[J]. 新疆石油天然气, 2018, 14(2): 37-41.LI Yishou. Research on the application of drilling fluid technology for wall stabilisation in Ke193 well[J]. Xinjiang Oil & Gas, 2018, 14(2): 37-41. [9] 马腾飞, 周宇, 李志勇, 等. 新型低伤害高性能微泡沫钻井液性能评价与现场应用[J]. 油田化学, 2021, 38(4): 571-579.MA Tengfei, ZHOU Yu, LI Zhiyong, et al. Evaluation and field application of new microfoam drilling fluid with low-damage and high-performance[J]. Oilfield Chemistry, 2021, 38(4): 571-579. [10] 孙晗森, 秦勇, 陆小霞, 等. 滇东黔西煤层气开发技术及先导性试验[J]. 中国海上油气, 2022, 34(4): 72-84.SUN Hansen, QIN Yong, LU Xiaoxia, et al. Development technology and pilot test of coalbed methane in eastern Yunnan and western Guizhou regions[J]. China Offshore Oil and Gas, 2022, 34(4): 72-84. [11] 韩成, 刘贤玉, 杨玉豪, 等. 南海D气田高温防水锁钻井液技术对策研究及应用[J]. 新疆石油天然气, 2019, 15(2): 35-39.HAN Cheng, LIU Xianyu, YANG Yuhao, et al. Research on technical countermeasures and application of high-temperature waterproof lock drilling fluid in Nanhai D gas field[J]. Xinjiang Oil & Gas, 2019, 15(2): 35-39. [12] 何希鹏, 何贵松, 高玉巧, 等. 常压页岩气勘探开发关键技术进展及攻关方向[J]. 天然气工业, 2023, 43(6): 1-14.HE Xipeng, HE Guisong, GAO Yuqiao, et al. Progress and direction of key technologies for exploration and development of atmospheric shale gas[J]. Natural Gas Industry, 2023, 43(6): 1-14. [13] 陈文可, 郑和, 龚厚平, 等. 中江区块沙溪庙组井壁失稳机理及烷基糖苷防塌钻井液[J]. 钻井液与完井液, 2023, 40(4): 438-445.CHEN Wenke, ZHENG He, GONG Houping, et al. Mechanisms of borehole instability of the Shaximiao formation in block Zhongjiang and the anti-collapse alkyl glycoside drilling fluid[J]. Drilling Fluid & Completion Fluid, 2023, 40(4): 438-445. [14] 袁玥辉, 屈沅治, 高世峰, 等. 抗温抗盐水基钻井液降滤失剂研究进展[J]. 新疆石油天然气, 2023, 19(2): 62-68.YUAN Yuehui, QU Yuanzhi, GAO Shifeng, et al. Advances in study on temperature-resistant and salt-tolerant fluid loss reducers for water-based drilling fluids[J]. Xinjiang Oil & Gas, 2023, 19(2): 62-68. [15] 陈俊斌, 明显森, 陶怀志, 等. 页岩气水基钻井液在YS-AB井现场试验与认识[J]. 钻采工艺, 2021, 44(4): 98-103.CHEN Junbin, MING Xiansen, TAO Huaizhi, et al. Application and recognition of shale gas water-based drilling fluid in well YS-AB[J]. Drilling & Production Technology, 2021, 44(4): 98-103. [16] 艾磊, 高云文, 欧阳勇, 等. 适用于页岩油钻井的低伤害防塌水基钻井液体系[J]. 钻井液与完井液, 2023, 40(5): 602-610.AI Lei, GAO Yunwen, OU YANG Yong, et al. Low damage highly inhibitive water based drilling fluid for drilling shale oil reservoir[J]. Drilling Fluid & Completion Fluid, 2023, 40(5): 602-610. [17] 黄维安, 邱正松, 杨力, 等. 煤层气钻井井壁失稳机理及防塌钻井液技术[J]. 煤田地质与勘探, 2013(2): 37-41.HUANG Weian, QIU Zhengsong, YANG Li, et al. Instability mechanism of sidewall and anti-sloughing drilling fluid technique for coalbed methane well drilling[J]. Coal Geology & Exploration, 2013(2): 37-41. -
下载: