A Nanocellulose Filter Loss Reducer for High Temperature Water Based Drilling Fluids
-
摘要: 利用水溶液聚合法接枝共聚合成了纳米纤维素降滤失剂CNF-ADDS,并分析了其对水基钻井液流变性和降滤失性的影响,评价了其抗温和抗盐、抗钙效果,研究了其降滤失机理。实验结果表明,降滤失剂CNF-ADDS的长度在300 nm左右,在水基钻井液基浆中添加2%CNF-ADDS,可以将钻井液的表观黏度提高到32 mPa·s,塑性黏度提高为22 mPa·s,在260℃老化后,150℃的高温高压滤失量仅为16.3 mL;在被36%NaCl和3%CaCl2污染,260℃老化后的滤失量分别为17.4 mL和16.5 mL,且泥饼韧且薄,降滤失剂CNF-ADDS可通过自组装成网状结构,吸附黏土颗粒,在高温和高盐、高钙环境中显著降低钻井液的滤失量。Abstract: A nanocellulose filter loss reducer CNF-ADDS was developed through aqueous solution graft polymerization. Laboratory experiments were conducted on it to analyze its effects on the rheology and filtration property of drilling fluids, to evaluate its high temperature performance and salt and calcium resistance capacities, and to reveal its filtration reduction mechanism. Experimental results show that the average length of the CNF-ADDS molecules is about 300 nm. Treatment of the base mud of a water-based drilling fluid with 2%CNF-ADDS increases its apparent viscosity to 32 mPa·s and the plastic viscosity to 22 mPa·s. After aging at 260℃, the HTHP filter loss tested at 150℃ is only 16.3 mL. After contamination by 36%NaCl and 3%CaCl2 respectively, the CNF-ADDS-treated drilling fluids were then aged at 260℃, the HTHP filter losses of the drilling fluids tested at 150℃ were 17.4 mL and 16.5 mL, respectively, and the mud cakes were tough and thin. By self-assembling into a network structure, the CNF-ADDS molecules can be adsorbed onto the surfaces of the clay particles, thereby reducing the filter loss of the drilling fluid in high temperature and high salinity (NaCl and CaCl2) environment.
-
表 1 钻井液污染前后的Zeta电位值
CNF-ADDS/% NaCl/% CaCl2/% ζ/mV 0 0 0 −27.7 2 0 0 −43.2 2 10 0 −41.5 2 0 3 −38.1 -
[1] 王中华. 2022~2023年国内钻井液处理剂研究进展[J]. 中外能源, 2024, 29(6): 39-51.WANG Zhonghua. Research progress of drilling fluid treatment agents in China from 2022 to 2023[J]. Sino-global Energy, 2024, 29(6): 39-51. [2] 李佳琦, 杨海彤, 葛兵, 等. 一种耐高温交联淀粉钻井液降滤失剂的制备与评价[J]. 特种油气藏, 2022, 29(4): 164-168. doi: 10.3969/j.issn.1006-6535.2022.04.023LI Jiaqi, YANG Haitong, GE Bing, et al. Preparation and application of cross-linked starch as filtrate reducer with high temperature tolerance for drilling fluid[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 164-168. doi: 10.3969/j.issn.1006-6535.2022.04.023 [3] 王彦玲, 蒋保洋, 兰金城, 等. 耐温抗盐微纳米环保降滤失剂的性能[J]. 钻井液与完井液, 2020, 37(6): 737-741. doi: 10.3969/j.issn.1001-5620.2020.06.010WANG Yanling, JIANG Baoyang, LAN Jincheng, et al. The properties of an environmentally friendly high temperature salt resistant micrometer and nanometer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 737-741. doi: 10.3969/j.issn.1001-5620.2020.06.010 [4] PANAMARATHUPALAYAM B, MANZOLELOUA C, SEBELIN L, et al. Multifunctional high temperature water-based fluid system[C]//Paper presented at the SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain: SPE, 2019: SPE-195009-MS. [5] POURAFSHARY P, AZIMPOUR S S, MOTAMEDI P, et al. Priority assessment of investment in development of nanotechnology in upstream petroleum industry[C]//Paper presented at the SPE Saudi Arabia Section Technical Symposium, Al-Khobar. Saudi Arabia: SPE, 2009: SPE-126101-MS. [6] 马鹏. 论述纳米材料钻井液在油田中的应用[J]. 中国石油和化工标准与质量, 2018, 38(10): 96-97. doi: 10.3969/j.issn.1673-4076.2018.10.046MA Peng. Application of nanomaterial drilling fluid in oilfield[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(10): 96-97. doi: 10.3969/j.issn.1673-4076.2018.10.046 [7] 王少帅, 张华. 纳米材料在钻井液封堵降滤失中的研究进展[J]. 广东化工, 2022, 49(19): 95-97. doi: 10.3969/j.issn.1007-1865.2022.19.030WANG Shaoshuai, ZHANG Hua. Research progress of nanomaterials in drilling fluid plugging and fluid loss reduction[J]. Guangdong Chemical Industry, 2022, 49(19): 95-97. doi: 10.3969/j.issn.1007-1865.2022.19.030 [8] 康成虎. 聚合物基纳米无机复合材料的制备与性能进展[J]. 塑料, 2023, 52(4): 172-177.KANG Chenghu. Progress in preparation and properties of Polymer-Based composite filled with inorganic nanoparticles[J]. Plastics, 2023, 52(4): 172-177. [9] 马尔基, 佩曼, 哈穆德, 等. 采用海泡石纳米颗粒控制膨润土基钻井液性能[J]. 石油勘探与开发, 2016, 43(4): 656-661.NEEDAA A M, PEYMAN P, HAMOUD A H, et al. Controlling bentonite-based drilling mud properties using sepiolite nanoparticles[J]. Petroleum Exploration and Development, 2016, 43(4): 656-661. [10] 赵雄虎, 高飞, 鄢捷年, 等. 纳米钻井液材料GY-2室内研究[J]. 油田化学, 2010, 27(4): 357-359,365.ZHAO Xionghu, GAO Fei, YAN Jienian, et al. Laboratory research on Nano-Material GY-2 for drilling fluids[J]. Oilfield Chemistry, 2010, 27(4): 357-359,365. [11] 王伟吉. 抗温环保纳米纤维素降滤失剂的研制及特性[J]. 钻井液与完井液, 2020, 37(4): 421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003WANG Weiji. Development and characteristics of a high temperature environmentally friendly nanocellulose filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003 [12] XIONGHU Z, EGWU S B, JINGEN D, et al. Synthesis of asphalt nanoparticles and their effects on drilling fluid properties and shale dispersion[J]. SPE Drilling & Completion, 2022, 37(1): 67-76. [13] JIA X R, ZHAO X H, CHEN B, et al. Polyanionic cellulose/hydrophilic monomer copolymer grafted silica nanocomposites as HTHP drilling fluid-loss control agent for water-based drilling fluids[J]. Applied Surface Science, 2022, 578: 152089. doi: 10.1016/j.apsusc.2021.152089 [14] AN Y X, JIANG G C, QI Y R, et al. Nano-fluid loss agent based on an acrylamide based copolymer "grafted" on a modified silica surface[J]. RSC Advances, 2016, 6(21): 17246-17255. doi: 10.1039/C5RA24686E [15] YANG J, JIANG G C, WANG G S, et al. Performance evaluation of polymer nanolatex particles as fluid loss control additive in water-based drilling fluids[J]. Geoenergy Science and Engineering, 2023, 223: 211462. doi: 10.1016/j.geoen.2023.211462 [16] 耿愿, 孙金声, 程荣超, 等. 基于微纳米结构疏油剂提高页岩气井井壁稳定性[J]. 石油勘探与开发, 2022, 49(6): 1252-1261. doi: 10.11698/PED.20220448GENG Yuan, SUN Jinsheng, CHENG Rongchao, et al. Micro/nano structured oleophobic agent improving the wellbore stability of shale gas wells[J]. Petroleum Exploration and Development, 2022, 49(6): 1252-1261. doi: 10.11698/PED.20220448 [17] 田晓, 周长华, 杨广彬, 等. 表面具有不同官能团的可分散二氧化硅纳米微粒对钻井液滤失性能的影响[J]. 油田化学, 2021, 38(3): 381-387,405.TIAN Xiao, ZHOU Changhua, YANG Guangbin, et al. Effect of dispersible silica nanoparticles with different functional groups on filtration properties of drilling fluid[J]. Oilfield Chemistry, 2021, 38(3): 381-387,405. [18] 李新亮, 段明, 邓正强, 等. 含笼状纳米粒子复合降滤失剂的制备与性能[J]. 油田化学, 2023, 40(4): 585-589.LI Xinliang, DUAN Ming, DENG Zhengqiang, et al. Preparation and performance evaluation of composite fluid loss reducer containing caged nanoparticles[J]. Oilfield Chemistry, 2023, 40(4): 585-589. [19] 黄维安, 李国真, 贾江鸿, 等. 环保型改性纳米碳酸钙降滤失剂的合成与性能评价[J]. 中国石油大学学报(自然科学版), 2024, 48(2): 126-134.HUANG Weian, LI Guozhen, JIA Jianghong, et al. Synthesis and performance evaluation of environment-friendly modified nano-calcium carbonate filtrate reducer[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2): 126-134. [20] ZOVEIDAVIANPOOR M, SAMSURI A. The use of nano-sized Tapioca starch as a natural water-soluble polymer for filtration control in water-based drilling muds[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 832-840. doi: 10.1016/j.jngse.2016.07.048 [21] 蒋官澄, 董腾飞, 崔凯潇, 等. 智能钻井液技术研究现状与发展方向[J]. 石油勘探与开发, 2022, 49(3): 577-585. doi: 10.11698/PED.20210666JIANG Guancheng, DONG Tengfei, CUI Kaixiao, et al. Research status and development directions of intelligent drilling fluid technologies[J]. Petroleum Exploration and Development, 2022, 49(3): 577-585. doi: 10.11698/PED.20210666 [22] SAGITOV R R, MINAEV K M, ZAKHAROV A S, et al. The study of the drilling mud fluid loss reducing agents based on carboxymethyl starch and cellulose[J]. Neftyanoe Khozyaystvo-Oil Industry, 2017, 2017(11): 102-105. [23] 许凯瑞, 宫庆华, 周国伟. 纳米纤维素的分类制备及其在电化学应用中的研究进展[J]. 高分子通报, 2020(10): 12-20.XU Kairui, GONG Qinghua, ZHOU Guowei. Progress on preparation of nanocelluloses and its applications in electrochemistry[J]. Chinese Polymer Bulletin, 2020(10): 12-20. [24] HALL L J, DEVILLE J P, ARAUJO C S, et al. Nanocellulose and its derivatives for High-Performance Water-Based fluids[C]//Paper presented at the SPE International Conference on Oilfield Chemistry. Montgomery, Texas, USA: SPE, 2017: SPE-184576-MS. [25] 赵雄虎, 王灿, 肖喆, 等. 纳米纤维素的制备及在钻井液中的应用研究进展[J]. 钻井液与完井液, 2025, 42(1): 20-29. doi: 10.12358/j.issn.1001-5620.2025.01.002ZHAO Xionghu, WANG Can, XIAO Zhe, et al. Research progress in preparation of nanocellulose and its application in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 20-29. doi: 10.12358/j.issn.1001-5620.2025.01.002 [26] 袁玥辉, 屈沅治, 高世峰, 等. 抗温抗盐水基钻井液降滤失剂研究进展[J]. 新疆石油天然气, 2023, 19(2): 62-68. doi: 10.12388/j.issn.1673-2677.2023.02.008YUAN Yuehui, QU Yuanzhi, GAO Shifeng, et al. Advances in study on temperature-resistant and salt-tolerant fluid loss reducers for water-based drilling fluids[J]. Xinjiang Oil & Gas, 2023, 19(2): 62-68. doi: 10.12388/j.issn.1673-2677.2023.02.008 [27] GUO D L, YUAN T Z, SUN Q Y, et al. Cellulose nanofibrils as rheology modifier and fluid loss additive in water-based drilling fluids: rheological properties, rheological modeling, and filtration mechanisms[J]. Industrial Crops and Products, 2023, 193: 116253. doi: 10.1016/j.indcrop.2023.116253 [28] LIU X L, QU J L, WANG A, et al. Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid[J]. Carbohydrate Polymers, 2019, 212: 67-74. doi: 10.1016/j.carbpol.2019.02.036 [29] HALL L J, DEVILLE J P, SANTOS C M, et al. Nanocellulose and biopolymer blends for high-performance water-based drilling fluids[C]//Paper presented at the IADC/SPE Drilling Conference and Exhibition. Fort Worth, Texas, USA: SPE, 2018: SPE-189577-MS. -
下载: