Ultra-High Temperature Suspension Stabilizer HPAS for Oil-Based Drilling and Completion Fluids and Its Working Mechanism
-
摘要: 针对目前油基钻完井液在240℃以上高温环境下悬浮稳定性难以维持的难题,基于空间网架结构增强胶体稳定性的原理,以海泡石纤维、正辛基三乙氧基硅烷为原料,经盐酸处理后有机改性,研制出强疏水性悬浮稳定剂HPAS。分别利用红外光谱、热重分析、粒径分析和表面润湿性等对其单体进行表征,分析结果表明改性成功。以HPAS为基础配制的一套高密度油基钻井液在260℃老化后性能保持良好,表观黏度、塑性黏度维持在33 mPa·s、27 mPa·s左右,动切力保持在4 Pa以上,破乳电压高于800 V,高温高压滤失量控制在5 mL以下,泥饼厚度小于2 mm;通过沉降稳定性评价发现,在240℃下静置7 d无硬沉,开罐状态:玻璃棒自由落体轻松触底,满足现场应用要求;此外,体系在65℃~240℃、常压~190 MPa的温度压力范围内,动切力始终维持在4.5 Pa以上,保证了体系良好的悬浮稳定性及携岩能力,为油基钻完井液在深井、超深井及万米深井的进一步应用提供了技术支持。Abstract: Oil-based drilling and completion fluids presently in use have poor suspension stability at high temperatures up to 240℃ or higher. To deal with this problem, a strongly hydrophobic suspension stabilizer HPAS was developed based on the principle of strengthening the stability of a colloidal system through spatial grid structure. HPAS was synthesized using sepiolite fiber and n-octyltriethoxysilane as the raw materials. The final product was obtained by treating the intermediate product with hydrochloric acid and then organic modification. Characterization of HPAS with IR, TGA, particle size analysis and surface wettability proved that the modification is successful. A high-density oil-based drilling fluid was formulated with HPAS. After aging at 260℃, the properties of the drilling fluid were still good, the AV and PV of the drilling fluid were about 33 mPa·s and 27 mPa·s, respectively, the YP of the drilling fluid was at least 4 Pa, the electric stability was higher than 800 V, the HTHP filter loss was kept under 5 mL, and the thickness of the mud cake was less than 2 mm. Evaluation of the sedimentation stability of the drilling fluid showed that after standing at 240℃ for 7 d there was no hard sedimentation found, and a glass rod can freely drop through the drilling fluid to the bottom of the mud container. Moreover, the YP of the drilling fluid remained at more than 4.5 MPa at temperatures between 65℃ and 240℃ and pressures between atmospheric pressure and 190 MPa, indicating that the drilling fluid can maintain good suspension stability and solids carrying performance under these conditions. The development of this drilling fluid provides a technical support for the use of oil-based drilling and completion fluids in drilling deep, ultra-deep wells and even wells of ten thousand meters in depths.
-
表 1 海泡石改性前后的比表面积
样品 单点法 比表面积/(m2·g−1) BET法 t-Plot法 原矿 1.38 1.42 1.45 HPA 1.72 1.87 2.44 HPAS 1.33 1.46 1.94 表 2 HPAS与多种有机土配伍性评价
有机土 实验条件 AV/mPa·s PV/mPa·s YP/Pa φ6/φ3 ES/V 开罐状态 HF-40W 老化前 37.5 25.0 12.5 11/10 1368 260℃、16 h 19.5 19.0 0.5 1/0 861 硬沉 HF-40W+HPAS 老化前 39.0 26.0 13.0 11/10 1441 260℃、16 h 30.5 22.0 8.5 6/5 948 无水无沉 HF-180 老化前 30.5 26.0 4.5 7/6 245 260℃、16 h 18.5 19.0 −0.5 1/0 1543 硬沉 HF-180+HPAS 老化前 30.5 26.5 4.0 7/6 271 260℃、16 h 27.0 21.0 6.0 7/6 1513 无水无沉 LH-OC 老化前 29.5 25.0 4.5 7/6 1346 260℃、16 h 21.0 22.0 −1.0 2/1 1010 硬薄沉 LH-OC+HPAS 老化前 29.5 25.0 4.5 7/6 1314 260℃、16 h 25.0 22.0 3.0 4/3 1159 无水无沉 BP-601 老化前 35.0 29.0 6.0 10/9 1457 260℃、16 h 22.0 21.0 1.0 1/0 1219 2 cm软沉 BP-601+HPAS 老化前 34.5 28.0 6.5 9/8 1168 260℃、16 h 32.5 27.0 5.5 8/7 1127 无水无沉 表 3 不同温度和时间老化后钻井液的流变参数
T/
℃t老化/
hAV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 ES/
V开罐
状态FLHTHP/
mL泥饼厚度/
mm240 0 32.0 27 5.0 8/7 801 40 33.5 28 5.5 10/9 2000+ 无水无沉 4.4 2 88 33.0 27 6.0 10/9 2000+ 无水无沉 5.0 2 260 0 33.5 28 5.5 8/7 1032 40 33.0 26 7.0 9/8 1667 无水无沉 3.0 1 88 28.0 24 4.0 5/4 1704 无水无沉 4.0 1 注:在65℃测量流变参数。FLHTHP测试温度为180℃、上压700 psi(4.8263 MPa)、下压200 psi(1.3790 MPa)、滤失时间30 min。 表 4 实验组和空白组高温高压流变数据
对比组 T/
℃P/
MPaAV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/Pa实验组 65 常压 44.5 36..5 8.0 7.4/6.6 7.8/10.4 100 70 53.0 44.0 9.0 8.1/7.4 7.4/8.8 130 100 42.5 35.5 7.0 7.7/6.4 7.2/8.0 150 130 36.0 29.5 6.5 6.6/5.5 5.8/7.0 180 150 34.0 29.0 5.0 6.8/5.8 6.4/6.9 200 170 29.0 23.5 5.5 5.9/5.3 5.7/6.5 220 180 27.0 22.0 5.0 5.7/5.4 5.4/6.2 240 190 25.5 21.0 4.5 5.2/4.6 5.0/5.8 空白组 65 常压 39.5 31.3 8.2 5.6/4.4 5.5/7.8 100 70 12.5 9.3 3.2 1.8/1.6 2.1/3.3 130 100 9.7 8.8 0.9 1.3/0.8 1.4/1.8 150 130 8.6 8.9 −0.3 0.8/0.7 0.7/1.0 180 150 6.9 7.4 −0.5 0.7/0.5 0.6/0.9 200 170 6.2 6.9 −0.7 0.6/0.5 0.4/0.6 220 180 5.2 5.8 −0.6 0.6/0.4 0.5/0.7 240 190 5.0 5.8 −0.8 0.5/0.4 0.4/0.5 表 5 空白组与实验组在不同高温高压静置不同时间的开罐状态
静置条件 编号 静置不同时间的开罐状态 1 d 3 d 5 d 7 d 14 d 220℃/
70 MPa空白组 0.1 cm硬沉
玻璃棒触底0.3 cm硬沉
玻璃棒未触底1 cm硬沉
玻璃棒未触底1 cm硬沉
玻璃棒未触底1 cm硬沉
玻璃棒未触底实验组 无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁240℃/
80 MPa实验组 无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁1 cm软沉
玻璃棒触底
弹起靠壁2 cm软沉
玻璃棒触底
不弹缓慢靠壁3 cm软沉
玻璃棒未触底 -
[1] 孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 76-89.SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 76-89. [2] 倪晓骁, 史赫, 程荣超, 等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液, 2022, 39(2): 133-138.NI Xiaoxiao, SHI He, CHENG Rongchao, et al. A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(2): 133-138. [3] 尹达, 吴晓花, 刘锋报, 等. 抗160℃超高密度柴油基钻井液体系[J]. 钻井液与完井液, 2019, 36(3): 280-286.YIN Da, WU Xiaohua, LIU Fengbao, et al. An ultra-high density diesel oil base drilling fluid for use at 160℃[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 280-286. [4] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术, 2019, 47(3): 95-102.WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95-102. [5] JIANG G C, NI X X, YANG L L, et al. Synthesis of superamphiphobic nanofluid as a multi-functional additive in oil-based drilling fluid, especially the stabilization performance on the water/oil interface[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2020, 588: 124385. doi: 10.1016/j.colsurfa.2019.124385 [6] 王星媛, 陆灯云, 吴正良. 抗220℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液, 2020, 37(5): 550-554,560.WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 550-554,560. [7] 于得水, 汪露, 刘仕银, 等. 顺北16X井二次侧钻超高温钻井液技术[J]. 钻井液与完井液, 2024, 41(1): 53-59.YU Deishui, WANG Lu, LIU Shiyin, et al. Ultra-high temperature drilling fluid technology for second sidetracking of the well Shunbei-16X[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 53-59 [8] 谢涛, 张磊, 杜明亮, 等. 悬浮稳定关键材料及超高温长效稳定油基钻完井液[J]. 钻井液与完井液, 2024, 41(6): 728-735.XIE Tao, ZHANG Lei, DU Mingliang, et al. Key suspension materials and ultra-high temperature long-term stable oil-based drilling and completion fluids[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 728-735 [9] 闫丽丽, 倪晓骁, 张家旗, 等. 纳米材料改善高密度油基钻完井液沉降稳定性的研究及应用[J]. 应用化工, 2023, 52(1): 53-57.YAN Lili, NI Xiaoxiao, ZHANG Jiaqi, et al. Nanoparticles improved the sedimentation stability of high-density oil-based drilling & completion fluids[J]. Applied Chemical Industry, 2023, 52(1): 53-57. [10] 佘运虎. 东海超深大位移井油基钻井液技术[J]. 钻井液与完井液, 2025, 42(3): 296-301.SHE Yunhu. Oil-based drilling fluid technology for ultra-deep extended reach wells in east China sea[J]. Drilling Fluid & Completion Fluid, 2025, 42(3): 296-301 [11] NI X X, SHI H, ZHANG J Q, et al. Modified laponite synthesized with special wettability as a multifunctional additive in oil-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2023, 220, Part B: 111211. [12] MA C, LI L, YANG Y, et al. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids[C]//2nd International Conference on New Material and Chemical Industry (NMCI2017). Sanya, China: NMCI, 2018: 012106. [13] 孙金声, 朱跃成, 白英睿, 等. 改性热固性树脂研究进展及其在钻井液领域应用前景[J]. 中国石油大学学报(自然科学版), 2022, 46(2): 60-75.SUN Jinsheng, ZHU Yuecheng, BAI Yingrui, et al. Research progress of modified thermosetting resin and its application prospects in field of drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 60-75. [14] 吴文兵, 钟杰, 刘涛, 等. 环保型抗超高温海水基低固相钻井液[J]. 钻井液与完井液, 2025, 42(4): 472-477.WU Wenbing, ZHONG Jie, LIU Tao, et al. An environmentally friendly ultra-high temperature low solids seawater-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2025, 42(4): 472-477 [15] 王维, 王金堂, 辛江, 等. 海陆过渡相页岩储层液岩作用机理及钻井液体系构建[J]. 钻井液与完井液, 2024, 41(4): 427-436. doi: 10.3969/j.issn.1007-9386.2005.03.007WANG Wei, WANG Jintang, XIN Jiang, et al. Mechanism of fluid shale interaction and construction of drilling fluid system in marine land transitional shale reservoirs[J]. Drilling Fluid & Completion Fluid, 2024, 41(4): 427-436 doi: 10.3969/j.issn.1007-9386.2005.03.007 [16] 寇亚浩, 倪晓骁, 黎剑, 等. 有机海泡石在油基钻井液中的应用效果与展望[J]. 应用化工, 2024, 53(9): 2206-2210. doi: 10.3969/j.issn.1671-3206.2024.09.039KOU Yahao, NI Xiaoxiao, LI Jian, et al. Application effect and prospect of organic sepiolite used in oil-based drilling fluid[J]. Applied Chemical Industry, 2024, 53(9): 2206-2210. doi: 10.3969/j.issn.1671-3206.2024.09.039 [17] 李静, 雷乾杰, 孟子毅, 等. 微波辅助改性海泡石补强天然橡胶的研究[J]. 橡胶工业, 2023, 70(7): 497-504.LI Jing, LEI Qianjie, MENG Ziyi, et al. Study on NR reinforced by microwave-assisted modified sepiolite[J]. China Rubber Industry, 2023, 70(7): 497-504. [18] 陈静. 黏土科学及应用技术[M]. 北京: 科学出版社, 2017.CHEN Jing. Clay science and technology applications[M]. Beijing: Science Press, 2017. -
下载: