Evaluation and Field Application of a Rheology Modifier for Non-aqueous Based Drilling Fluids
-
摘要: 研制了一种非水基钻井液用提切剂PF-MOVIS,以中海油田服务股份有限公司非水基钻井液体系为基础,在不同体系中考察了加量、老化温度、老化时间等对钻井液流变、电稳定性等的影响,同时考察了体系的抗污染能力。结果发现,随着PF-MOVIS加量的增加,体系提切效果明显增强;随着老化时间增加,体系提切效果逐渐减弱,说明PF-MOVIS随着钻进过程会逐渐消耗,在实际作业过程中需要少量多次添加;PF-MOVIS抗温能力达170℃,在170℃以下的老化温度下,PF-MOVIS对体系有显著的提切效果。同时,PF-MOVIS对体系的电稳定性有明显的增强作用;具有优异的抗污染能力;在不同的非水基钻井液体系中都有明显的提切效果。通过中试放大研究,中试产品性能与实验室小试样品性能相当,甚至优于实验室小试样品。同时现场应用结果表明,PF-MOVIS在非水基钻井液体系中有优异的增黏提切作用,应用效果良好,具有较大的推广价值。Abstract: A rheology modifier for non-aqueous based drilling fluids was prepared in this work. Based on the drilling fluid systems of China Oilfield Services Co., LTD., the influence of dosage, aging temperature and aging time on rheology and electrical stability performance of drilling fluid were studied. The anti-pollution ability were also studied in this work. The results showed the gel strength was obviously improved with the increasing dosage and weakened with the increasing aging time. It indicated that PF-MOVIS is gradually consumed during drilling process and it need to be added with a small number of times in the actual operation process. The temperature resistance of PF-MOVIS reached 170℃. It showed an obvious better gel strength under the temperature of 170℃ when adding the PF-MOVIS. Moreover, PF-MOVIS could obviously improve the electrical stability properties. It has excellent anti-pollution ability and reservoir protection performance. According to the pilot scale study, the performance of the pilot product was comparable to even better than that of the lab sample. At the same time, the field application results showed that PF-MOVIS obviously increased gel strength for non-aqueous based drilling fluids. The field application effect was very well and and it has great popularization value.
-
表 1 不同老化温度下的FLAT-PRO合成基钻井液体系性能
PF-MOVIS/% T老化/℃ φ600/φ300 φ200/φ100 φ6/φ3 ES/V AV/mPa·s PV/mPa·s YP/Pa 0 120 56/34 26/16 7/6 705 28 22 6 0.4 67/46 38/29 15/15 1116 34 21 13 0 150 61/35 27/18 7/7 1224 31 26 5 0.4 61/39 31/22 10/10 1366 31 22 9 0 160 60/36 27/19 7/7 1023 30 24 6 0.4 67/45 35/27 13/13 1158 34 22 12 0 170 60/37 28/20 8/7 1026 30 23 7 0.4 64/42 33/25 12/11 1160 32 22 10 0 180 60/39 32/23 11/11 1011 30 21 9 0.4 58/37 29/21 11/10 1161 29 21 8 表 2 不同老化时间下的MODRILL油基钻井液体系性能
配方 t老化/h φ600/φ300 φ200/φ100 φ6/φ3 ES/V AV/mPa·s PV/mPa·s YP/Pa 基浆 0 47/27 20/12 3.0/3.0 880 24 20 4 16 46/25 18/11 2.5/2.0 353 23 21 2 基浆+1% PF-MOVIS 0 83/53 41/29 14.0/12.0 1120 42 30 12 4 76/49 37/26 12.0/11.0 963 38 27 11 8 75/47 36/25 10.5/9.5 818 38 28 10 16 60/38 29/19 8.0/7.0 825 30 22 8 24 67/42 33/23 9.0/8.0 888 34 25 9 48 65/38 29/19 8.0/6.0 863 33 27 6 48 h+1% PF-MOVIS 89/54 42/29 12.0/11.0 1046 45 35 10 表 3 不同PF-MOVIS加量下MOMDRILL油基钻井液体系性能
PF-MOVIS/% 老化条件 φ600/φ300 φ200/φ100 φ6/φ3 ES/
VAV/
mPa·sPV/
mPa·sYP/
Pa0 热滚前 48/27 20/12 3/3 1599 24 21 3 150℃×16 h 43/24 18/11 3/2 769 22 19 3 0.2 热滚前 62/39 30/21 8/7 1575 31 23 8 150℃×16 h 50/30 23/15 4/4 1121 25 20 5 0.3 热滚前 70/46 36/26 11/9 1514 35 24 11 150℃×16 h 55/34 28/19 7/6 1231 28 21 7 0.4 热滚前 83/53 42/30 12/12 1541 42 30 12 150℃×16 h 61/39 31/21 8/8 1311 31 22 9 表 4 加入PF-MOVIS的MOMDRILL油基钻井液抗污染能力评价性能
配方 老化条件 φ600/φ300 φ200/φ100 φ6/φ3 ES/
VAV/
mPa·sPV/
mPa·sYP/
Pa基浆 热滚前 43/24 18/11 3/2 769 22 19 3 150℃×16 h 53/31 24/15 5/4 606 27 22 3 基浆+0.4% PF-MOVIS 热滚前 61/39 31/21 8/8 1311 31 22 7 150℃×16 h 67/41 31/21 9/8 1021 34 26 10 表 5 PF-MOVIS的实验室产品和中试产品性能对比
配方 老化条件 φ600/φ300 φ200/φ100 φ6/φ3 ES/
VAV/
mPa·sPV/
mPa·sYP/
Pa基浆 热滚前 46/26 19/12 4/3 787 23.0 20 3.0 120℃×16 h 47/28 20/13 4/3 200 24.0 19 5.0 基浆+0.6% PF-MOVIS (实验室) 热滚前 70/47 39/28 9/9 1265 35.0 23 12.0 120℃×16 h 55/34 27/20 6/5 502 27.5 21 6.5 基浆+0.6% PF-MOVIS (中试) 热滚前 76/49 40/29 14/13 1102 38.0 27 11.0 120℃×16 h 52/34 26/18 7/6 820 26.0 18 8.0 -
[1] 王少帅. 植物油基微乳液型油基钻井液冲洗液体系构建[J]. 当代化工, 2022, 51(12): 2921-2924,2928. doi: 10.3969/j.issn.1671-0460.2022.12.032WANG Shaoshuai. Construction of vegetable oil-based microemulsion type oil-based drilling fluid flushing fluid system[J]. Contemporary Chemical Industry, 2022, 51(12): 2921-2924,2928. doi: 10.3969/j.issn.1671-0460.2022.12.032 [2] 刘刚, 姜超, 李超, 等. 油包水型乳状液高温稳定性[J]. 钻井液与完井液, 2021, 38(4): 404-411.LIU Gang, JIANG Chao, LI Chao, et al. Study on high temperature stability of invert emulsion[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 404-411. [3] 彭浩. 油基合成基钻井液用提切剂的研制及性能评价[D]. 北京: 中国石油大学(北京), 2020.PENG Hao. Development and performance evaluation of cutting agent for Oil-Based and Synthetic-Based drilling fluids[D]. Beijing: China University of Petroleum Beijing, 2020. [4] 张雪梅, 张贵磊, 严海源, 等. 合成基钻井液固相絮凝分离评价及应用[J]. 当代化工, 2023, 52(3): 730-734.ZHANG Xuemei, ZHANG Guilei, YAN Haiyuan, et al. Evaluation and application of solid phase flocculation separation of synthetic base drilling fluid[J]. Contemporary Chemical Industry, 2023, 52(3): 730-734. [5] PORTNOY R C, LUNDBERG R D, WERLEIN E R. Novel polymeric oil mud viscosifier for high-temperature drilling[C]//IADC/SPE Drilling Conference. Dallas, Texas: SPE, 1986: SPE-14795-MS. [6] 李晓岚, 孙举, 郑志军, 等. 无土相油基钻井液用增黏提切剂的合成及性能[J]. 石油化工, 2016, 45(9): 1087-1093.LI Xiaolan, SUN Ju, ZHENG Zhijun, et al. Synthesis and properties of a tackifying and shear strength-improving agent for clay-free oil-based drilling fluids[J]. Petrochemical Technology, 2016, 45(9): 1087-1093. [7] 覃勇, 蒋官澄, 邓正强, 等. 聚酯提切剂的研制及高密度油包水钻井液的配制[J]. 钻井液与完井液, 2015, 32(6): 1-4.QIN Yong, JIANG Guancheng, DENG Zhengqiang, et al. Synthesis and evaluation of a primary emulsifier for high temperature oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(6): 1-4. [8] 黄贤斌, 孙金声, 蒋官澄, 等. 改性脂肪酸提切剂的研制及其应用[J]. 中国石油大学学报(自然科学版), 2019, 43(3): 107-112.HUANG Xianbin, SUN Jinsheng, JIANG Guancheng, et al. Synthesis of a modified fatty acid as rheology modifier and its application[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(3): 107-112. [9] 孙金声, 黄贤斌, 蒋官澄, 等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发, 2018, 45(4): 713-718.SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4): 713-718. [10] 罗春芝, 章楚君, 王怡迪, 等. 聚醚脂肪酸类油基钻井液提切剂的研制与应用[J]. 钻井液与完井液, 2023, 40(3): 303-312.LUO Chunzhi, ZHANG Chujun, WANG Yidi, et al. Synthesis and application of polyether fatty acid rheology modifier for oil-based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 303-312. [11] 孙伟, 彭洁, 王倩, 等. 抗高温油基钻井液用提切剂的研制及性能评价[J]. 精细石油化工, 2020, 37(4): 19-24.SUN Wei, PENG Jie, WANG Qian, et al. Development and performance evaluation of cutting agent for high temperature oil-based drilling fluid[J]. Speciality Petrochemicals, 2020, 37(4): 19-24. [12] GB/T 16783.2—2012, 石油天然气工业 钻井液现场测试, 第2部分: 油基钻井液[S].GB/T 16783.2—2012, Petroleum and natural gas industries—Field testing of drilling fluids—Part 2: Oil-based fluids[S]. [13] 崔鹏, 杨志淑, 马双政. 一种抗高温环保型低增黏提切剂[J]. 钻井液与完井液, 2022, 39(4): 441-445.CUI Peng, YANG Zhishu, MA Shuangzheng. Synthesis and properties of high temperature resistant environmental protection shear strength improving agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(4): 441-445. [14] 王中华. 国内钻井液处理剂研究进展、现状分析与发展建议[J]. 钻井液与完井液, 2025, 42(1): 1-19.WANG Zhonghua. Research progress, current situation analysis and development suggestions of drilling fluid treatment agentsin China[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 1-19. [15] 韩子轩, 韩秀贞, 王显光, 等. 川西海相长水平井白油基钻井液技术研究与应用[J]. 钻井液与完井液, 2025, 42(4): 509-515.HAN Zixuan, HAN Xiuzhen, WANG Xianguang, et al. Research and application of white oil-based drilling fluid technology forlong horizontal wells in western sichuan[J]. Drilling Fluid & Completion Fluid, 2025, 42(4): 509-515. -
下载: