A Highly Inhibitive Vegetable Oil-Based Drilling Fluid
-
摘要: 为探索更环保、高效的油基钻井液,降低成本与环境影响,提升钻井作业安全性与质量,为钻井液领域提供新的绿色解决方案。以花生油、大豆油、蓖麻油等植物油作为基液的植物油钻井液生态毒性小、润滑性好、黏土稳定性高,可以较好地代替柴油基钻井液。以改性棉籽油作为基液,搭配油基钻井液用处理剂,形成一套植物油基钻井液体系。经评价,植物油基钻井液具有较强的抑制黏土水化膨胀能力和高温稳定性及强的抗盐、抗膨润土污染能力,并且具有良好的储层保护效果。该体系在吐哈油田成功应用2井次,应用结果表明,钻井液现场使用表现出良好性能,具有井壁稳定、井眼净化和安全环保等特点;植物油基钻井液解决了井壁垮塌,保障了优快钻完井和施工安全,且钻屑检测结果达标。形成的植物油基钻井液性能与柴油基钻井液相当,未来可逐步替代传统油基钻井液。Abstract: This study aims at finding a more environmentally friendly and efficient oil-based drilling fluid to reduce drilling costs, to minimize the negative effects of the drilling fluid on the environment, to enhance the safety and quality of drilling operation, and to provide a new green drilling fluid solution. It was well known that vegetable oil-based drilling fluids formulated with base fluids such as peanut oil, soybean oil and castor oil have low ecotoxicity, good lubricity and high inhibitive capacity in stabilizing clay formations, and can be used to replace diesel oil-based drilling fluid. In laboratory experiments a vegetable oil-based drilling fluid was formulated with modified cottonseed oil as the base fluid and other oil-based drilling fluid additives. Laboratory evaluation results showed that the vegetable oil-based drilling fluid has strong capacity in inhibiting clay hydration and swelling, good high temperature stability, strong salt and bentonite contamination resistance, as well as excellent reservoir protection performance. Two well-times of successful use of this drilling fluid in Tuha oilfield showed that the drilling fluid performed very well: it effectively stabilized the borehole wall against collapse, ensuring the optimal and fast drilling of the wells and the safety of the drilling operation. Oil-on-cuttings was tested for its toxicity and the results conformed to the relevant standards. The vegetable oil-based drilling fluid has properties equivalent to those of a diesel oil-based drilling fluid and can be used to replace traditional oil-based drilling fluids in the future.
-
表 1 不同油水比对油基钻井液性能的影响
油水比 AV/mPa·s PV/mPa·s YP/Pa FLHTHP /mL ES/V 70∶30 71 49 22 2.0 486 80∶20 52 38 14 3.2 573 90∶10 40 15 25 5.5 746 表 2 氯化钙不同加量下钻井液的活度测试结果
盐水浓度/% AV/mPa·s PV/mPa·s YP/Pa 活度 0 1 20 22 18 4 0.830 25 30 21 9 0.745 30 44 29 15 0.645 40 50 35 15 0.403 注:基液油∶氯化钙水溶液=80∶20;在20℃测试。 表 3 乳化剂浓度对钻井液流变性能的影响
主乳化剂∶辅乳化剂 测定条件 AV/mPa·s PV/mPa·s ES/V 2∶1 老化前 39.5 32.0 275 150℃、16 h 40.0 33.5 247 2∶2 老化前 41.5 33.0 753 150℃、16 h 42.0 34.5 691 1∶2 老化前 37.0 34.0 215 150℃、16 h 39.5 34.5 229 注:配方为:改性棉籽油∶30%氯化钙盐水(80∶20)+主乳化剂+辅乳化剂+1%有机土。 表 4 降滤失剂改性沥青树脂加量对钻井液流变性的影响
降滤失剂/% 反应条件 AV/mPa·s PV/mPa·s FLHTHP /mL 0 老化前 41.5 33.0 150℃、16 h 42.0 34.5 13.2 1 老化前 42.0 33.5 150℃、16 h 43.0 35.0 10.6 2 老化前 43.5 34.5 150℃、16 h 44.5 36.0 8.4 3 老化前 49.0 39.5 150℃、16 h 51.5 42.5 8.1 注:配方:改性棉籽油∶30%氯化钙盐水(80∶20)+2%主乳化剂+2%辅乳化剂+1%有机土+2%润湿剂+降滤失剂。 表 5 封堵剂与植物油基钻井液配伍性评价实验
封堵剂 实验条件 AV/mPa·s PV/mPa·s FLHTHP/mL 0 老化前 43.5 34.5 150℃、16 h 44.5 36.0 8.4 5%氧化沥青 老化前 56.5 46.0 150℃、16 h 58.0 48.0 4.2 2%氧化沥青+
1%纳米乳液+
2%超细碳酸钙老化前 58.5 48.5 150℃、16 h 61.0 51.5 2.3 注:基浆:改性棉籽油∶30%氯化钙盐水(80∶20)+2%主乳化剂+2%辅乳化剂+1%有机土+2%润湿剂+2%降滤失剂。 表 6 植物油基钻井液砂盘封堵性评价
t/
min不同砂盘孔隙下渗透量 /mL 20 μm 40 μm 55 μm 120 μm 150 μm 1 0.1 0.1 0.1 2.4 3.4 5 0.1 0.1 0.1 3.0 4.6 10 0.1 0.1 0.1 3.8 10.7 15 0.1 0.1 0.1 3.8 19.9 20 0.1 0.1 0.1 3.8 20.8 30 0.1 0.1 0.1 3.8 23.9 表 7 植物油基钻井液老化前后的钻井液性能对比
测定条件 ρ/
g·cm−3AV/
mPa·sPV/
mPa·sGel/
Pa/PaFLHTHP/
mLES/
V老化前 1.75 64.0 51.5 3.5/7.0 2.0 819 150℃、16 h 1.75 72.5 58.5 3.0/5.5 2.4 793 表 8 钻屑对植物油基钻井液性能的影响
钻屑/
%测定条件 AV/
mPa·sPV/
mPa·sFLHTHP /
mLES/
V10 老化前 69.0 55.0 2.2 745 150℃、16 h 70.5 58.5 2.6 647 20 老化前 77.5 67.0 3.6 535 150℃、16 h 80.0 70.5 4.5 505 表 9 NaCl盐水浓度对钻井液性能的影响
盐水/
%测定
条件AV/
mPa·sPV/
mPa·sFLHTHP /
mLES/
V10 老化前 66.0 55 2.3 771 150℃、16 h 70.0 60 2.8 545 20 老化前 74.5 61 3.0 634 150℃、16 h 71.0 58 3.4 503 表 10 柴油基钻井液和植物油基钻井液污染后岩心的渗透率恢复值
钻井液 岩心 Ka/
mDKo/
mDKd/
mD渗透率
恢复值/%柴油基 1# 138.6 53.2 48.7 91.5 植物油基 2# 139.8 53.3 48.4 90.8 注:1#岩心直径24.5 mm,长度35.6 mm;2#岩心直径24.6 mm,长度35.4 mm。 表 11 植物油基钻井液环保性能检测结果
井深/
mpH 水分/
%含油率/
%不同物质含量/(mg·kg−1) 六价铬 砷 镉 锌 镍 铅 铜 苯并芘 2118 10.8 1.4 1.8 未测出 25.7 未测出 168 43.4 58.0 64.0 未测出 3030 10.9 2.4 1.9 未测出 24.0 未测出 166 42.5 58.6 62.2 未测出 3169 10.6 4.3 1.7 未测出 24.2 未测出 170 43.0 58.6 63.5 未测出 标准值 2.0~12.5 ≤60 ≤2 ≤13 ≤80 ≤20 ≤1500 ≤150 ≤600 ≤600 ≤0.7 表 12 奇103H井实测钻井液性能
井深/m ρ/(g·cm−3) FV/s PV/mPa·s YP/Pa Gel/(Pa/Pa) FLHTHP/mL ES/V 水相Cl−/(mg·L−1) 1850 1.31 62 28 10.5 4.5/5.0 2.2 832 24 400 2257 1.31 60 26 9.5 4.5/5.0 2.2 836 24 500 2457 1.31 67 30 11.0 4.5/5.0 2.2 780 24 500 2715 1.30 64 30 10.5 3.5/4.0 2.2 720 24 600 3108 1.32 64 30 10.5 3.5/4.0 2.2 760 24 600 3715 1.34 65 32 11.0 3.5/4.0 2.2 720 24 300 4108 1.34 68 33 11.0 3.5/4.0 2.1 720 23 200 4320 1.34 64 31 10.5 3.5/4.0 2.2 760 24 100 4580 1.34 66 34.5 11.5 3.5/4.5 2.2 776 23 200 -
[1] 王广财, 刘万成, 陈向明, 等. 深层页岩油水平井复合盐弱凝胶钻井液技术[J]. 石油钻采工艺, 2023, 45(6): 675-682.WANG Guangcai, LIU Wancheng, CHEN Xiangming, et al. Technology of compound salt weak gel drilling fluid for long horizontal wells in deep shale oil reservoirs[J]. Oil Drilling & Production Technology, 2023, 45(6): 675-682. [2] 王广财, 刘万成, 郑江波, 等. 吐哈油田胜北区块地层特性及钻井液技术对策[J]. 地质与勘探, 2024, 60(3): 592-600.WANG Guangcai, LIU Wancheng, ZHENG Jiangbo, et al. Formation characteristics and the drilling fluid technology countermeasures of the Shengbei block in Tuha oilfield[J]. Geology and Exploration, 2024, 60(3): 592-600. [3] 张瑞. 棕榈油钻井液及其低温流变性调控方法研究[D]. 青岛: 中国石油大学(华东), 2018.ZHANG Rui. Research on palm oil drilling fluid and its low temperature rheological control method[D]. Qingdao: China University of Petroleum, 2018. [4] 孙金声, 刘进京, 潘小镛, 等. 线性α-烯烃钻井液技术研究[J]. 钻井液与完井液, 2003, 20(3): 27-30.SUN Jinsheng, LIU Jinjing, PAN Xiaoyong, et al. Liner alpha olefin drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2003, 20(3): 27-30. [5] 向兴金, 肖稳发, 罗春芝, 等. 醚基钻井液的室内研究[J]. 钻井液与完井液, 1998, 15(6): 3-6.XIANG Xingjin, XIAO Wenfa, LUO Chunzhi, et al. Laboratory study on ether-base drilling fluid[J]. Drilling Fluid & Completion Fluid, 1998, 15(6): 3-6. [6] KUMAR S, THAKUR A, KUMAR N, et al. A novel oil-in-water drilling mud formulated with extracts from Indian mango seed oil[J]. Petroleum Science, 2020, 17(1): 196-210. doi: 10.1007/s12182-019-00371-7 [7] SAASEN A, BERNTSEN M, LOKINGHOLM G, et al. The effect of drilling fluid base-oil properties on occupational hygiene and the marine environment[J]. SPE Drill& Compl, 2001, 16(3): 150-153. [8] 任亮亮, 罗健生, 李超, 等. 油水比对油基/合成基钻井液体系性能的影响[J]. 广州化工, 2023, 51(9): 150-152,163. doi: 10.3969/j.issn.1001-9677.2023.09.043REN Liangliang, LUO Jiansheng, LI Chao, et al. The influence of oil-water ratio on the performance of oil-based/synthetic drilling fluid systems[J]. Guangzhou Chemical Industry, 2023, 51(9): 150-152,163. doi: 10.3969/j.issn.1001-9677.2023.09.043 [9] 张行云, 郭磊, 张兴来, 等. 活度平衡高效封堵钻井液的研究及应用[J]. 钻采工艺, 2014, 37(1): 84-87.ZHANG Xingyun, GUO Lei, ZHANG Xinglai, et al. Research and application of activity balanced and efficient plugging drilling fluid[J]. Drilling & Production Technology, 2014, 37(1): 84-87. [10] 罗兵. 水基钻井液活度调节技术研究[D]. 青岛: 中国石油大学(华东), 2017.LUO Bing. Study on activity regulation technology of water-based drilling fluids[D]. Qingdao: China University of Petroleum, 2017. [11] 赵庆哲, 蓝强, 郑成胜. 油基钻井液用乳化剂的研究现状及发展趋势[J]. 山东化工, 2023, 52(7): 88-90.ZHAO Qingzhe, LAN Qiang, ZHENG Chengsheng. Research and development of emulsifiers for oil-based drilling fluids[J]. Shandong Chemical Industry, 2023, 52(7): 88-90. [12] 李雪婷, 罗春芝, 李海滨, 等. 油基钻井液润湿剂LRS-1的室内研究与应用[J]. 长江大学学报(自然科学版), 2020, 17(6): 44-48,81.LI Xueting, LUO Chunzhi, LI Haibin, et al. Laboratory research and application of oil-based drilling fluid wetting agent LRS-1[J]. Journal of Yangtze University (Natural Science Edition), 2020, 17(6): 44-48,81. [13] 彭三兵, 李斌, 韩东东, 等. BIODRILL S合成基钻井液在垦利区块首次应用[J]. 钻井液与完井液, 2024, 41(1): 60-67.PENG Sanbing, LI Bin, HAN Dongdong, et al. First application of the synthetic-based drilling fluid BIODRILL S in block Kenli of Bohai oilfield[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 60-67. [14] 赵幸滨, 李艳飞, 王涛, 等. 新型水基钻完井液降滤失剂作用机理及性能评价[J]. 当代化工, 2024, 53(3): 636-639. doi: 10.3969/j.issn.1671-0460.2024.03.027ZHAO Xingbin, LI Yanfei, WANG Tao, et al. Mechanism and performance evaluation of new filtrate reducer for water-based drilling and completion fluid[J]. Contemporary Chemical Industry, 2024, 53(3): 636-639. doi: 10.3969/j.issn.1671-0460.2024.03.027 [15] 罗明望, 张现斌, 王中秋, 等. 超高温低黏聚合物降滤失剂的研制及作用机理[J]. 钻井液与完井液, 2020, 37(5): 585-592.LUO Mingwang, ZHANG Xianbin, WANG Zhongqiu,et al. Preparation and working mechanisms of an ultra-high temperature low viscosity polymer filtrate reducer[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 585-592. [16] 孙金声, 黄贤斌, 蒋官澄, 等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发, 2018, 45(4): 713-718. doi: 10.11698/PED.2018.04.17SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4): 713-718. doi: 10.11698/PED.2018.04.17 [17] 倪晓骁, 史赫, 闫丽丽, 等. 油基钻井液用改性碳纳米管纳微米封堵剂[J]. 油田化学, 2023, 40(4): 578-584.NI Xiaoxiao, SHI He, YAN Lili, et al. Modified carbon nanotube as nano-micro plugging agent in oil-based drilling fluid[J]. Oilfield Chemistry, 2023, 40(4): 578-584. [18] 任保友, 蒲晓林, 曹成, 等. 纳米钻井液提高地层承压能力实验[J]. 石油钻采工艺, 2018, 40(2): 179-184.REN Baoyou, PU Xiaolin, CAO Cheng, et al. Experimental study on improving the formation pressure-bearing capacity by using nano-drilling Fluid[J]. Oil Drilling & Production Technology, 2018, 40(2): 179-184. [19] 叶成, 高世峰, 鲁铁梅, 等. 玛18井区水平井井壁失稳机理及强封堵钻井液技术研究[J]. 石油钻采工艺, 2023, 45(1): 38-46.YE Cheng, GAO Shifeng, LU Tiemei, et al. Well instability mechanism and strong plugging drilling fluid technology of horizontal well in Ma 18 well block[J]. Oil Drilling & Production Technology, 2023, 45(1): 38-46. [20] 孔勇, 金军斌, 林永学, 等. 封堵防塌钻井液处理剂研究进展[J]. 油田化学, 2017, 34(3): 556-560.KONG Yong, JIN Junbin, LIN Yongxue, et al. Research advances of plugging anti-sloughing drilling fluid additives[J]. Oilfield Chemistry, 2017, 34(3): 556-560. [21] 赵春花, 罗健生, 夏小春, 等. 高性能合成基钻井液体系的研制及性能研究[J]. 钻井液与完井液, 2018, 35(3): 25-31. doi: 10.3969/j.issn.1001-5620.2018.03.004ZHAO Chunhua, LUO Jiansheng, XIA Xiaochun, et al. Development of and study on a high performance synthetic base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 25-31. doi: 10.3969/j.issn.1001-5620.2018.03.004 [22] GB/T 16783.2-2012. 石油天然气工业 钻井液现场测试第2部分: 油基钻井液[S].GB/T 16783.2-2012. Petroleum and natural gas industries- Field testing of drilling fluids-Part 2: Oil-based fluids[S]. [23] 耿铁, 杨洁. 国内外深水钻井液技术进展[J]. 钻井液与完井液, 2025, 42(4): 442-452. doi: 10.3969/j.issn.1001-0890.2010.02.022GENG Tie, YANG Jie. Advances in deepwater drilling and completion fluid technology at domestic and abroad[J]. Drilling Fluid & Completion Fluid, 2025, 42(4): 442-452 doi: 10.3969/j.issn.1001-0890.2010.02.022 [24] 王中华. 国内钻井液研究应用现状、存在问题与发展建议[J]. 钻井液与完井液, 2025, 42(4): 425-441.WANG Zhonghua. Research and application status, existing problems and development suggestions of drilling fluid in China[J]. Drilling Fluid & Completion Fluid, 2025, 42(4): 425-441. [25] 李俊, 王宗宝, 韩晓琳, 等. 合成基钻井液在油田钻井的应用进展[J]. 山西化工, 2024, 44(4): 36-41.LI Jun, WANG Zongbao, HAN Xiaolin, et al. Application progress of synthetic-based drilling fluid in oilfield drilling[J]. Shanxi Chemical Industry, 2024, 44(4): 36-41. [26] DB 65/T 3997-2017. 油气田钻井固体废物综合利用污染控制要求[S].DB 65/T 3997-2017. Pollution control requirements for comprehensive utilization of oil and gas field drilling solid waste[S]. -
下载: