Technology of Low Aromatic Oil-based Gas-to-liquid Drilling Fluid for Oil Shale in Western South China Sea
-
摘要: 北部湾盆地涠西南凹陷流沙港组二段储层为油页岩,微裂缝高度发育、脆性矿物含量高,前期直井钻探使用PLUS/KCl水基钻井液进行作业,井壁失稳情况严重、频繁遇阻卡钻。室内分析了该区域使用的水基和柴油基钻井液存在的问题,在现场柴油基钻井液配方基础上通过引入低黏度低芳烃气制油和级配优选微纳米封堵剂材料,构建了一套高性能低芳烃气制油基钻井液体系,该体系活度0.62,活度更低、岩屑回收率高达98%、300 μm微裂缝封堵无漏失、沉降因子小于0.51,抑制性和封堵性更佳,且高温性能稳定。气制油基钻井液在8口页岩油大斜度勘探井进行了应用,井径扩大率小于2%,与柴油基钻井液体系相比,最大漏斗黏度和塑性黏度分别下降了54%、41%,日损耗减少50%,综合工程成本累计节省约20%。该技术为加快开发海上页岩油资源提供了有力的钻井液技术支持。
-
关键词:
- 油页岩 /
- 大斜度井 /
- 低芳烃气制油基钻井液 /
- 井壁稳定 /
- 北部湾
Abstract: The second member of Liushagang Formation in Weishan Sag, Beibuwan Basin, is oil shale with highly developed micro-fractures and high brittle mineral content. PLUS/KCl water-based drilling fluid was used in vertical well drilling in the early stage, resulting in serious wellbore instability and frequent blockage. The problems existing in the water-based and diesel-based drilling fluids used in the area were analyzed in the laboratory. Based on the formula of the on-site diesel-based drilling fluid, a set of high performance and low aromatics gas-to-oil drilling fluid system was constructed by introducing low viscosity and low aromatics gas-to-oil production and grading optimal micro-nano sealing agent materials. The system has a lower activity of 0.62, a high recovery rate of 98%, no leakage in 300 μm micro-crack plugging, a settlement factor less than 0.51, better inhibition and plugging, and stable high temperature performance. The gas-to-oil drilling fluid was applied in 8 highly inclined rock oil exploration wells, and the application well operation was smooth, and the diameter enlargement rate was less than 2%. Compared with the diesel-based drilling fluid system, the maximum funnel viscosity and plastic viscosity were reduced by 54% and 41% respectively, and the daily loss was reduced by 50%, and the comprehensive cost was reduced by about 85 million yuan. This technology provides powerful drilling fluid technical support for accelerating the development of offshore shale oil resources. -
表 1 油页岩全岩矿物分析
井深/m 全岩矿物组分/% 黏土矿物 黄铁矿 方解石 石英 白云石 斜长石 3625.5 25 3 55 8 9 9 3639.7 17 8 60 11 4 4 3658.2 28 6 53 5 8 8 3738.9 22 5 56 9 8 2 3827.5 20 5 63 6 6 6 3958.6 23 7 55 7 8 8 表 2 油页岩黏土矿物分析
井深/m 黏土矿物组分的相对含量/% 伊利石 伊/蒙混层 绿泥石 高岭石 混层比 3625.5 56 31 6 7 18 3639.7 59 41 18 3658.2 67 33 18 3738.9 58 32 8 2 18 3827.5 67 33 18 3958.6 60 40 18 表 3 油页岩微裂缝分析数据表
顶部深度/
m底部深度/
m层厚度/
m最大微裂缝
宽度/μm微裂缝
数量3625.5 3637.0 11.5 166.7 16 3639.7 3653.2 13.5 187.5 9 3658.2 3678.2 20.0 198.6 13 3738.9 3755.7 16.8 220.8 15 3827.5 3841.3 13.8 270.2 12 3958.6 3973.2 14.6 315.3 17 表 4 活度性能数据记录表
钻井液体系 活度 钻井液体系 活度 油页岩 0.77 柴油基 0.65 PLUS/KCl水基 0.91 气制油 0.62 无固相有机盐 0.85 表 5 不同钻井液体系的抑制性能
钻井液
体系膨胀率/
%回收率/
%钻井液
体系膨胀率/
%回收率/
%水 63 7.2 柴油基 15 83 PLUS/KCl水基 38 61.0 气制油 13 98 无固相有机盐 33 69.0 注:膨胀性实验条件:150℃、0.7 MPa、120 h;回收率实验条件:150℃×16 h。 表 6 钻井液封堵性能数据记录
钻井液体系 FL /
mL微裂缝30 min滤失量/mL 100 μm 200 μm 300 μm PLUS/KCl水基 12.6 0 0 持续漏失 无固相有机盐 13.0 0 持续漏失 持续漏失 柴油基 4.5 0 0 1.2 气制油基 0.9 0 0 0 注:实验条件:150℃×3.5 MPa。 表 7 低芳烃气制油基钻井液体系的基本性能
ρ/
g·cm−3油水
比测试
条件PV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V1.30 85∶15 滚前 24 5.5 980 滚后 26 6.5 2.5/4.0 1.5 1180 75∶25 滚前 27 7.0 890 滚后 29 7.5 2.5/5.5 1.0 970 1.60 85∶15 滚前 31 8.0 1130 滚后 32 9.0 3.0/5.5 1.6 1240 75∶25 滚前 36 10.0 1080 滚后 37 10.0 5.5/8.0 1.3 1290 1.90 95∶5 滚前 32 11.0 1020 滚后 33 12.0 8.5/13.0 1.8 1180 85∶15 滚前 36 13.5 1030 滚后 38 14.0 12.0/18.0 1.0 1160 注:热滚条件:200℃×16 h;高温高压滤失测定条件:150℃、3.5 MPa。 表 8 模拟地层水污染试验数据记录表
模拟地
层水/%测试
条件PV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V0 滚前 33 12.5 1650 滚后 34 13.5 11.0/15.0 1.0 2000 5 滚前 36 13.0 1590 滚后 38 14.5 11.5/15.5 1.5 1960 10 滚前 41 16.0 1510 滚后 46 17.0 12.5/16.5 1.9 1890 15 滚前 44 16.5 1470 滚后 49 17.5 13.5/17.0 2.4 1820 注:老化条件:200℃×16h;高温高压滤失测定条件:150℃×3.5 MPa。 表 9 钻屑污染试验数据记录表
钻屑/
%测定
时间PV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V0 滚前 33 12.5 1650 滚后 34 13.5 11.0/15.0 1.0 2000 5 滚前 35 13.0 1710 滚后 37 15.0 13.0/16.0 1.1 1950 10 滚前 38 14.0 1670 滚后 43 15.0 14.5/17.0 1.2 1910 15 滚前 45 16.5 1620 滚后 47 18.0 16.0/17.5 1.4 1850 注:老化条件:200℃×16 h ;高温高压滤失测定条件:150℃×3.5 MPa。 表 10 钻屑污染试验数据记录表
ρ钻井液/(g·cm−3) ρ上/(g·cm−3) ρ下/(g·cm−3) 沉降因子SF 1.800 1.790 1.809 0.503 1.901 1.893 1.907 0.502 2.002 1.992 2.011 0.502 2.201 2.197 2.215 0.502 注:养护条件为200℃×72 h。 表 11 低芳烃气制油基钻井液现场性能
井号 ρ/
g·cm−3FV/
sPV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
VNWD1 1.85 41 31 11.0 10/13 1.1 1720 NWD2 1.88 43 31 11.0 10/13 1.0 1750 NWD3 1.80 46 31 11.5 11/15 1.1 1790 NWD4 1.86 47 32 11.5 11/15 1.0 1835 NWD5 1.85 48 32 12.5 13/16 1.0 1882 NWD6 1.90 49 33 12.0 13/16 1.0 1960 NWD7 1.89 50 33 12.5 13/16 1.0 1990 NWD8 1.91 50 34 12.0 13/16 1.0 2000 -
[1] 任岩, 曹宏, 姚逢昌, 等. 岩石脆性评价方法进展[J]. 石油地球物理勘探, 2018, 53(4): 875-886,658.REN Yan, CAO Hong, YAO Fengchang, et al. Review of rock brittleness evaluation methods[J]. Oil Geophysical Prospecting, 2018, 53(4): 875-886,658. [2] 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘, 2012, 19(5): 356-363.TANG Ying, XING Yun, LI Lezhong, et al. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers, 2012, 19(5): 356-363. [3] 李玉光, 崔应中, 王荐, 等. 沁水盆地页岩气地层页岩特征分析及钻井液对策[J]. 石油天然气学报, 2013, 35(12): 105-111. doi: 10.3969/j.issn.1000-9752.2013.12.020LI Yuguang, CUI Yingzhong, WANG Jian, et al. Shale character and drilling fluid solution of Qinshui basin shale formation[J]. Journal of Oil and Gas Technology, 2013, 35(12): 105-111. doi: 10.3969/j.issn.1000-9752.2013.12.020 [4] 佘运虎. 东海超深大位移井油基钻井液技术[J]. 钻井液与完井液, 2025, 42(3): 296-301.SHE Yunhu. Oil-based drilling fluid technology for ultra-deep extended reach wells in East China Sea[J]. Drilling Fluid & Completion Fluid, 2025, 42(3): 296-301. [5] 鄢捷年. 钻井液工艺学[M]. 东营: 石油大学出版社, 2001.YAN Jienian. Drilling fluids technology[M]. Dongying: Petroleum University Press, 2001. [6] 崔明磊. 油基钻井液性能优化研究[D]. 青岛: 中国石油大学(华东), 2011.CUI Minglei. Research on oil based drilling fluid performance optimization[D]. Qingdao: Chaina University of Petroleum, 2011. [7] 刘智勤, 徐加放, 彭巍, 等. 陵水区块超深水高性能恒流变油基钻井液技术[J]. 钻井液与完井液, 2024, 41(2): 184-190.LIU Zhiqin, XU Jiafang, PENG Wei, et al. A high performance constant rheology oil based drilling fluid for ultra deep water drilling in Lingshui block[J]. Drilling Fluid & Completion Fluid, 2024, 41(2): 184-190. [8] 徐安, 岳前升. 油基钻井液及其处理剂研究进展综述[J]. 长江大学学报(自然科学版), 2013, 10(8): 77-79.XU An, YUE Qiansheng. Review of research progress of oil base drilling fluid and its treating agent[J]. Journal of Yangtze University (Natural Science Edition), 2013, 10(8): 77-79. [9] KAGESON LOE N, M, SANDERS M W, GROWCOCK F, et al. Particulate-based loss-prevention material-the secrets of fracture sealing revealed[J]. SPE Drilling & Completion, 2009, 24(4): 581-589. [10] 舒福昌, 岳前升, 黄红玺, 等. 新型无水全油基钻井液[J]. 断块油气田, 2008, 15(3): 103-104.SHU Fuchang, YUE Qiansheng, HUANG Hongxi, et al. A new water-free oil-based drilling fluid[J]. Fault-Block Oil and Gas Field, 2008, 15(3): 103-104. [11] BANG V, POPE G A, SHARMA M M. Development of a successful chemical treatment for gas wells with liquid blocking[C]//Paper presented at the SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, 2099: SPE-124977-MS. [12] 蒲晓林, 梁大川, 王平全, 等. 抑制钻屑形成泥球的钻井液研究[J]. 西南石油学院学报, 2002, 24(2): 46-49.PU Xiaolin, LIANG Dachuan, WANG Pingquan, et al. Study on drilling fluids of inhibiting formation of mud balls by rock cuttings[J]. Journal of Southwest Petroleum Institute, 2002, 24(2): 46-49. [13] 刘海水, 王超, 魏子路, 等. 钻井过程中泥球形成的影响因素探讨[J]. 化学与生物工程, 2011, 28(8): 70-73. doi: 10.3969/j.issn.1672-5425.2011.08.019LIU Haishui, WANG Chao, WEI Zilu, et al. Study on influential factors of gumbo ball formation during drilling process[J]. Chemistry & Bioengineering, 2011, 28(8): 70-73. doi: 10.3969/j.issn.1672-5425.2011.08.019 [14] 张岩, 向兴金, 鄢捷年, 等. 快速钻井中泥球形成的影响因素与控制措施[J]. 中国海上油气, 2011, 23(5): 335-339. doi: 10.3969/j.issn.1673-1506.2011.05.012ZHANG Yan, XIANG Xingjin, YAN Jienian, et al. Influence factors and controlling measures on formation of gumbo balls during fast drilling[J]. China Offshore Oil and Gas, 2011, 23(5): 335-339. doi: 10.3969/j.issn.1673-1506.2011.05.012 [15] 杨兰平, 李志强, 聂强勇, 等. 温度、压力对油基钻井液密度的影响规律及数学模型[J]. 钻井液与完井液, 2022, 39(2): 146-150.YOU Fuchang, WEN Hua, WU Jiao, et al. High density clay-free oil based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(2): 146-150 [16] 周忠亚. 复兴地区页岩气井油基钻井液井壁稳定和防漏堵漏技术[J]. 钻井液与完井液, 2024, 41(3): 305-317.ZHOU Zhongya. Use oil based drilling fluid to stabilize borehole wall and prevent and control mud losses in Fuxing area[J]. Drilling Fluid & Completion Fluid, 2024, 41(3): 305-317 [17] TRAUGOTT D, SWEATMAN R, VINCENT R. WPCI treatments in a deep HP/HT production hole increase LOT pressure to drill ahead to TD in a gulf of Mexico shelf well[C]//Paper presented at the SPE Annual Technical Conference and Exhibition. Dallas, Texas, 2005: SPE-96420-MS. [18] WHITFILL D, WANG H. Making economic decisions to mitigate lost circulation[C]//Paper presented at the SPE Annual Technical Conference and Exhibition. Dallas, Texas, 2005: SPE-95561-MS. [19] SHTAM S, KACHAR J. Use of KCl-polymer clouding out polyol drilling fluid in combating high pressure in deep exploratory wells of Assam Field: a case study[C]//Paper presented at the SPE Oil and Gas India Conference and Exhibition. Mumbai, India, 2010: SPE-128849-MS. [20] 孙嘉林, 张健伟, 范森, 等. 水基与油基钻井液的水平井环空岩屑浓度对比[J]. 钻井液与完井液, 2025, 42(4): 516-522.SUN Jialin, ZHANG Jianwei, FAN Sen, et al.Comparison of cuttings concentration in annular spaces of horizontal wells between water- and oil-based drilling fluids[J].Drilling Fluid & Completion Fluid, 2025, 42(4): 516-522. [21] VAN OORT E, FRIEDHEIM J, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores[J]. SPE Drilling & Completion, 2011, 26(4): 519-530. -
下载: