Cementing Technology of PRHH-X Well in Parahuacu Oilfield, Ecuador
-
摘要: 厄瓜多尔Parahuacu油田为了实现勘探开发效益最大化,减少三开裸眼段过长所导致的问题,对PRHH-X井二开井身结构进行了优化和调整,二开采用Φ244.5 mm套管封固BASE TENA油层和Caliza A异常高压灰岩层。针对PRHH-X井Φ244.5 mm套管固井面临的大尺寸环空冲洗和顶替效率低、套管居中度低、大斜度井段井眼净化能力弱、油藏边底水活跃以及水泥浆易受地层流体侵扰等技术难题,采用了以下措施:设计多效前置液体系,可以有效冲洗、溶蚀环空中的钻井液和泥饼,提高固井二界面的抗剪切强度;设计了高性能拓荒液,其具有较好的悬浮稳定性,确保固井施工的安全;分析水泥浆受地层流体侵扰的原因,评价触变剂性能,优化组合形成防侵扰水泥浆。室内实验表明,多效前置液体系与清水体系相比,固井二界面在2 d和7 d的抗剪切强度分别增长了526%和715%;拓荒液稳定性良好,稠化时间大于10 h;防侵扰水泥浆静胶凝过渡时间为8 min,40 Bc到70 Bc的过渡时间为6 min,表现出强触变性,8 h抗压强度达到20.6 MPa,SPN值为2.2756,防气窜性能良好。基于上述多效前置液体系、拓荒液、水泥浆和配套技术措施(优化扶正器的类型和数量、浆柱结构设计、组合流态顶替)形成的固井技术在PRHH-X井现场应用效果良好,固井质量合格,裸眼段优质率达85%以上,为厄瓜多尔Parahuacu油田含产层和异常高压气层的Φ244.5 mm技术套管固井提供了技术支撑。
-
关键词:
- 防侵扰水泥浆 /
- 多效前置液 /
- 拓荒液 /
- Φ244.5 mm套管固井 /
- Parahuacu油田
Abstract: In recent years, in order to maximize the benefits of exploration and development and reduce the issues arising from the long openhole section of the third section in the Parahuacu field in Ecuador, the second well structure of the PRHH-X well has undergone optimization and adjustment. A Φ244.5 mm casing was utilized to seal the BASE TENA oil layer and the abnormally high-pressure Caliza A limestone layer in the second section.In response to the the technical problems faced during the Φ244.5 mm casing cementing in the PRHH-X well, such as low displacement efficiency and low flushing efficiency of large annulus, low casing center degree, the weak wellbore cleaning capacity in the highly deviated section, the active edge and bottom water of the reservoir, and the susceptibility of the cement slurry to invasion by formation fluids, the following measures were adopted. Designing a multi-effect preflush system can effectively flush and dissolve the mud and mud cake in the annulus, enhancing the shear strength of the second interface of cementing. Designing high-performance pioneer fluid with good suspension stability ensures the safety of cementing operations. Analyze the reasons for the invasion of formation fluids into the cement slurry, evaluate the performance of thixotropic agents, and optimize the combination to form anti-invasion cement slurry. Indoor experiments show that compared with the clear water system, the shear strength of the second interface of the cementing in the multi-effect preflush system increased by 526% and 715% at 2 days and 7 days, respectively. The stability of the pioneer fluid is good, and the thickening time is more than 10 hours. The static gel transition time of the anti-intrusion cement slurry is 8 minutes, and the transition time from 40 Bc to 70 Bc is 6 minutes, showing strong thixotropy. 8 h The compressive strength reaches 20.6 MPa, and the SPN value is 2.2756, with good anti-gas channeling performance. Based on the above multi-effect preflush system, pioneer fluid, cement slurry and supporting technical measures (optimizing the type and quantity of centralizers, slurry column structure design, and combined flow state displacement), the cementing technology was applied in the PRHH-X well in 2024 with good results. The cementing quality was qualified, and the high-quality rate of the openhole section was over 85%, providing strong technical support for the technical casing cementing of the φ244.5 mm production layer and abnormal high-pressure gas layer in the Parahuacu oilfield, Ecuador. -
表 1 多效前置液体系配方及设计用量
前置液 配方 ρ/(g·cm−3) 设计用量/m3 冲洗液 清水+2.5%BCS-010+
5%KCl1.05 4.0 冲洗酸 清水+2.0%HCl+
2.5%SMSS-44L+5%KCl1.05 4.0 隔离液 清水+2.5%G404SP+
5%XC-HV+CaCO31.26~1.38 8.0 界面胶
结增强清水+5%SS-5L 1.06 6.0 表 2 清水和多效前置液体系二界面胶结强度对比
前置液 ρ/
g·cm−3t浸泡/
min界面胶结强度/MPa 养护2 d 平均值 养护7 d 平均值 清水 1.00 9.0 0.041 0.052 0.058 0.050 0.065 0.068 0.082 0.072 冲洗液 1.05 1.5 0.312 0.242 0.385 0.313 0.522 0.612 0.628 0.587 冲洗酸 1.05 3.0 隔离液体系 1.30 3.0 界面胶结增强体系 1.06 1.5 表 3 托荒液的基本性能
ρ/(g·cm−3) t稠化/h 流动度/cm ∆ρ/(g·cm−3) φ300 φ100 PV/mPa·s YP/Pa 1.56 >10 30 0.03 112 64 72 20 表 4 不同触变剂加量的稠度差值实验结果
CA-L/
%t停机/
min停机
稠度/Bc再开启
稠度/Bc稳定
稠度/Bc稠度
差值/Bct稠化/
min0 10 16.2 19.5 16.6 3.3 110 1.0 10 20.6 28.7 21.8 8.1 98 2.0 10 28.3 41.6 29.6 13.3 87 3.0 10 38.4 58.8 40.1 20.4 69 注:测试条件为52℃、35.6 MPa、28 min。 表 5 不同加量触变剂防侵扰水泥浆的性能
CA-L/
%剪切应力/Pa n K/Pa·sn 静止10 s 静止10 min 剪切应力差值/Pa 0 11 14 3 0.46 0.87 1.0 14 20 6 0.51 1.08 2.0 18 29 11 0.55 1.45 3.0 23 38 15 0.61 1.86 表 6 防侵扰水泥浆领浆的性能
ρ/
g·cm−3t稠化/min FL/
mL游离液/
%p/MPa 40 Bc 70 Bc 8 h 12 h 24 h 1.62 320 344 55 0.1 3.6 5.1 8.5 表 7 防侵扰水泥浆尾浆主要性能
水泥浆 ρ/
g·cm−3FL/
mL初始稠度/
Bct稠化/min 胶凝强度过渡时间/min Gel/
Pa/Pap/MPa 40 Bc 70 Bc 差值 48 Pa 240 Pa 差值 8 h 24 h 尾浆1 1.92 20 18 220 225 5 235 248 13 11/52 13.1 29.7 尾浆2 2.04 15 21 141 147 6 152 160 8 16/65 20.6 39.5 表 8 尾浆的稠化时间、阻力系数和SPN值
水泥浆 t100 Bc /min t30 Bc /min 阻力系数 SPN值 尾浆1 230 217 0.0794 1.5878 尾浆2 155 135 0.1517 2.2756 表 9 增稠钻井液的基本性能
钻井液 ρ/(g·cm−3) n K/(Pa·sn) PV/Pa YP/Pa 增稠钻井液 1.18 0.5443 0.8231 25 13 表 10 水泥浆和前置液塞流和紊流临界流速
固井液 ρ/g·cm−3 n K/Pa·sn 塞流临界流速/m3·min−1 紊流临界流速/m3·min−1 尾浆1 1.92 0.7235 1.4303 0.775 9.68 尾浆2 2.04 0.6864 2.1071 0.886 10.2 隔离液 1.30 0.6919 0.1776 0.192 2.11 冲洗酸 1.05 1.000 0.0040 0.012 0.252 表 11 PRHH-X井完钻数据和环空封固段设计表
井号 裸眼段长度/m 拓荒液数量/m3 领浆设计封固段/m 尾浆1设计封固段/m 尾浆2设计封固段/m PRHH-X 1563 6.0 1521~2021 2021~2833 2833~3458 表 12 PRHH-X井Φ244.5 mm产层套管固井液注替方案设计表
固井液 体积/m3 排量/(m3·min−1) t/min 冲洗液 4.0 1.0 4.0 冲洗酸 4.0 1.0 4.0 隔离液体系 8.0 1.2 7.0 界面胶结增强体系 6.0 1.2 5.0 拓荒液 6.0 1.0 6.0 领浆 45.0 1.2 37.5 尾浆1 8.0 1.2 6.7 尾浆2 53.0 1.8 29.4 清水替量 1.0 0.5 2.0 钻井液替量 4.0 1.8 2.2 钻井液替量 20.0 2.8 5.0 钻井液替量 45.0 2.5 18.0 钻井液替量 61.0 0.8 76.0 表 13 PRHH-X井套管居中度和顶替效率模拟数据
井号 井斜/(°) 扶正器数量/个 套管
居中度/%顶替
效率/%最大 平均 整体
半柔性螺旋
刚性PRHH-X 66.98 45.85 30 15 75 73 45 25 90 88 60 30 92 91 -
[1] 艾磊, 刘子帅, 张华, 等. 长庆陕224区块储气库井大尺寸套管固井技术[J]. 钻井液与完井液, 2015, 32(4): 63-66.AI Lei, LIU Zishuai, ZHANG Hua, et al. Large size well cementing for underground gas storage in block Shaan224 Changqing[J]. Drilling Fluid & Completion Fluid, 2015, 32(4): 63-66. [2] 敖康伟, 涂思琦, 杨昆鹏, 等. 库车山前大尺寸套管固井技术[J]. 石油钻探技术, 2022, 50(6): 85-91.AO Kangwei, TU Siqi, YANG Kunpeng, et al. Cementing technologies with large-size casing in the Kuqa piedmont[J]. Petroleum Drilling Techniques, 2022, 50(6): 85-91. [3] 刘振通, 宋志强, 王军, 等. 硅酸钠前置液在委内瑞拉重油带固井中的应用[J]. 钻井液与完井液, 2015, 32(6): 96-99.LIU Zhentong, SONG Zhiqiang, WANG Jun, et al. Application of sodium silicate prepad fluid in cementing heavy oil zones in Venezuela[J]. Drilling Fluid & Completion Fluid, 2015, 32(6): 96-99. [4] 顾军, 秦文政. MTA方法固井二界面整体固化胶结实验[J]. 石油勘探与开发, 2010, 37(2): 226-231. doi: 10.1016/S1876-3804(10)60028-6GU Jun, QIN Wenzheng. Experiments on integrated solidification and cementation of the cement-formation interface based on mud cake to agglomerated cake (MTA) method[J]. Petroleum Exploration and Development, 2010, 37(2): 226-231. doi: 10.1016/S1876-3804(10)60028-6 [5] 胡晋军, 张立丽, 张耀, 等. 埕海油田大斜度井超短尾管固井技术[J]. 石油钻探技术, 2021, 49(3): 81-86.HU Jinjun, ZHANG Lili, ZHANG Yao, et al. Ultra-short liner cementing technology for highly deviated wells in the Chenghai oilfield[J]. Petroleum Drilling Techniques, 2021, 49(3): 81-86. [6] 卢海川, 张伟, 熊超, 等. 触变水泥浆体系研究综述[J]. 精细石油化工进展, 2016, 17(3): 21-26.LU Haichuan, ZHANG Wei, XIONG Chao, et al. Review of research on thixotropic cement slurry systems[J]. Advances in Fine Petrochemicals, 2016, 17(3): 21-26. [7] 步玉环, 王强, 蔡壮, 等. 增压稠化仪的固井水泥浆触变性能评价方法[J]. 实验室研究与探索, 2020, 39(4): 37-41.BU Yuhuan, WANG Qiang, CAI Zhuang, et al. A new evaluation method for thixotropic performance of cement slurry based on pressurized consistometer[J]. Research and Exploration in Laboratory, 2020, 39(4): 37-41. [8] 陆沛青, 桑来玉, 谢少艾, 等. 苯丙胶乳水泥浆防气窜效果与失重规律分析[J]. 石油钻探技术, 2019, 47(1): 52-58.LU Peiqing, SANG Laiyu, XIE Shaoai, et al. Analysis of the anti-gas channeling effect and weight loss law of styrene-acrylic latex cement slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52-58. [9] 朱海金, 高继超, 邹双, 等. 胶凝过渡态水泥浆防气窜能力评价方法[J]. 钻井液与完井液, 2023, 40(6): 793-797,805.ZHU Haijin, GAO Jichao, ZOU Shuang, et al. Method of evaluating the capacity of gas channeling prevention of a cement slurry in gelling transition-state[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 793-797,805. [10] 刘仍光. 基于防气窜失重预测模型的胶乳水泥浆参数影响规律分析[J]. 钻采工艺, 2021, 44(6): 7-12.LIU Rengguang. Influence rule research on parameter analysis based on anti-gas channeling prediction model for pressure reduction of latex cement slurry[J]. Drilling & Production Technology, 2021, 44(6): 7-12. [11] 沈勇, 康世柱, 王刚, 等. 乌东1井大环空井眼固井实践[J]. 钻井液与完井液, 2010, 27(5): 81-83.SHEN Yong, KANG Shizhu, WANG Gang, et al. Technology for cementing in large annulus of well Wudong[J]. Drilling Fluid & Completion Fluid, 2010, 27(5): 81-83. [12] 丁士东. 塔河油田紊流、塞流复合顶替固井技术[J]. 石油钻采工艺, 2002, 24(1): 20-22.DING Shidong. Combination displacement cementing of turbulent and plug flow in Tahe oilfield[J]. Oil Drilling & Production Technology, 2002, 24(1): 20-22. -