Anti-Corrosion Cement Slurry Technology for Deep CCUS-EOR Wells in Hetao Basin
-
摘要: CCUS是实现碳中和的关键技术之一,CO2的注入引起的井筒温度变化可能使水泥石产生微间隙,CO2在潮湿、高温、高压的环境中对水泥石产生长期的腐蚀,造成CO2泄露,导致储层和井筒完整性受到破坏、停产等。作为国内最深层次的CCUS-EOR工程,河套盆地面临温压变化及长期CO2腐蚀的问题,结合该地区现有成熟的固井水泥浆体系,引入防腐材料和活性材料,研发了一套具有强度高、抗CO2腐蚀能力强、微膨胀等特点的高性能防腐水泥浆体系。对比水泥石在高温湿相CO2中的长期性能,研究结果表明,优化后的水泥浆常规性能满足现场施工要求;在150℃、CO2分压40 MPa条件下,常规水泥石中加入防腐材料后的120 d腐蚀深度小于2.00 mm,抗压强度衰退约3.2%,渗透率增加14.19%,较常规水泥石大为改善;低密度水泥石的120 d腐蚀深度为2.12 mm,抗压强度衰退约4.34%,渗透率增加23.49%。该水泥浆体系在现场应用30余井次,固井质量优质率90%以上,对河套盆地的CCUS-EOR工程奠定了基础。Abstract: CCUS is one of the key technologies for achieving carbon neutrality. CO2 injection into a well causes the well temperature to change and hence produces micro fractures in the set cement. In a damp, high-temperature high-pressure environment CO2 causes a long-term corrosion to the set cement, resulting in CO2 leakage, failure of the integrity of the reservoir and the borehole, as well as production stoppage etc. As the deepest CCUS-EOR engineering in China, the Hetao Basin has long been faced with temperature and pressure changes as well as long-term CO2 corrosion. To deal with these problems, a high-performance anti-corrosion cement slurry was developed by introducing corrosion inhibitive materials and active materials into the mature cement slurries commonly used in the field operations in the basin. This new cement slurry has those characteristics such as high strength, high resistance to CO2 corrosion and micro expansion. Study results show that, compared with other cement slurries, the optimized cement slurry has long-term performance in a damp high temperature that meets the requirements of field operations. At 150℃ and CO2 partial pressure of 40 MPa, the optimized set cement treated with corrosion inhibitors has a 120-d corrosion depth less than 2.00 mm, a compressive strength that declines only by 3.2%, and a permeability that only increases by 14.19%, indicating that the performance of the set cement has been greatly improved. As with the low-density set cement, the 120-d corrosion depth is 2.12 mm, the compressive strength declines by about 4.34%, and the permeability increases by 23.49%. This new cement slurry was used 30 well-times in field operations, with more than 90% of the job quality being excellent, and this has laid the foundation for the CCUS-EOR engineering in the Hetao Basin.
-
Key words:
- Well Cementing /
- CCUS Well /
- Anti-corrosion cement slurry /
- Hetao Basin
-
表 1 粉煤灰和矿渣的性能
名称 ρ/
g·cm−3D50/
μmD75/
μm表面积/体积/
m2·cm−3粉煤灰 2.40 13.710 29.086 2.1675 矿渣 2.85 14.869 29.764 1.6169 表 2 水泥浆常规性能
配方 ρ/
g·cm−3FLAPI/
mLn K/
(Pa·sn)△ρ/
g·cm−3t稠化/min
(100℃)t终凝/
h1# 1.87 40 0.78 0.44 0 130 4.5~5.0 2# 1.87 38 0.82 0.47 0 138 4.5~5.0 3# 1.45 42 0.86 0.26 0 345 11~12 4# 1.45 44 0.83 0.37 0 324 11~12 注:流变参数测定温度为90℃。 表 3 水泥石不同腐蚀时间下的抗压强度(CO2压力40 MPa)
配方 T养护/
℃p/MPa 7 d 14 d 30 d 60 d 90 d 120 d 2#-未腐蚀 150 40.1 45.5 50.9 52.5 53.4 54.7 2#-腐蚀 150 39.8 44.8 49.8 51.2 52.0 52.9 4#-未腐蚀 90 23.6 26.5 27.5 29.1 29.7 29.9 4#-腐蚀 90 23.3 26.0 26.8 28.2 28.5 28.6 -
[1] 闫睿昶, 徐明, 虞海法, 等. 巴彦河套盆地复杂储层固井技术[J]. 钻井液与完井液, 2023, 40(1): 82-88.YAN Ruichang, XU Ming, YU Haifa, et al. Well cementing technology for complex reservoirs in the Bayan Hetao basin[J]. Drilling Fluid & Completion Fluid, 2023, 40(1): 82-88. [2] 闫睿昶, 陈新勇, 汝大军, 等. 巴彦河套新区深井钻完井关键技术[J]. 石油钻采工艺, 2022, 44(1): 15-19.YAN Ruichang, CHEN Xinyong, RU Dajun, et al. Key technologies for deep well drilling and completion in Bayan Hetao new area[J]. Oil Drilling & Production Technology, 2022, 44(1): 15-19. [3] 沈华, 刘震, 史原鹏, 等. 河套盆地临河坳陷油气成藏过程解剖及勘探潜力分析[J]. 现代地质, 2021, 35(3): 871-882.SHEN Hua, LIU Zhen, SHI Yuanpeng, et al. Hydrocarbon accumulation process and exploration potential in Linhe depression, Hetao basin[J]. Geoscience, 2021, 35(3): 871-882. [4] 连威, 王能昊, 李军, 等. CO2地质封存泄漏机理与井筒完整性研究进展[J]. 华南师范大学学报(自然科学版), 2024, 56(5): 1-15.LIAN Wei, WANG Nenghao, LI Jun, et al. Research progress on CO2 geological storage leakage mechanism and wellbore integrity[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(5): 1-15. [5] 吴广军. CO2埋存条件下的油井水泥石腐蚀机理研究[D]. 青岛: 中国石油大学(华东), 2020.WU Guangjun. Study on corrosion mechanism of oil well cement under CO2 storage conditions[D]. Qingdao: China University of Petroleum, 2020. [6] 王佳珺, 彭云帆, 石礼岗, 等. 海上CCS场景防CO2腐蚀固井水泥浆体系研究[J]. 山西化工, 2024, 44(10): 107-110,118.WANG Jiajun, PENG Yunfan, SHI Ligang, et al. Research on anti CO2 corrosion cement slurry system for offshore CCS scenarios[J]. Shanxi Chemical Industry, 2024, 44(10): 107-110,118. [7] 付颖. 基于颗粒级配技术的防腐水泥浆体系配方设计及施工工艺研究[D]. 成都: 西南石油大学, 2014.FU Ying. Research on formula design and construction process of anti corrosion cement slurry system based on particle grading technology[D]. Chengdu: Southwest Petroleum University, 2014. [8] 岳家平, 彭云帆, 武广瑷, 等. 遇CO2自修复防腐固井水泥浆体系研究及应用[J]. 石油化工应用, 2024, 43(4): 67-71.YUE Jiaping, PENG Yunfan, WU Guangai, et al. Research and application of CO2[J]. Petrochemical Industry Application, 2024, 43(4): 67-71. [9] 李芹. 抗CO2防腐蚀剂FH的合成及其在水泥浆中的性能研究[D]. 成都: 西南石油大学, 2015.LI Qin. Synthesis of CO2 resistant and anti-corrosion agent FH and its performance in cement slurry[D]. Chengdu: Southwest Petroleum University, 2015. [10] 张易航, 宋旭辉, 许明标, 等. 固井水泥石腐蚀防治研究进展[J]. 应用化工, 2019, 48(10): 2450-2455.ZHANG Yihang, SONG Xuhui, XU Mingbiao, et al. Review of research on corrosion prevention and control of oil well cement[J]. Applied Chemical Industry, 2019, 48(10): 2450-2455. [11] 雷旭, 宋慧平, 薛芳斌, 等. 粉煤灰基混凝土防腐涂料的制备及其性能研究[J]. 涂料工业, 2019, 49(1): 22-26.LEI Xu, SONG Huiping, XUE Fangbin, et al. Study on preparation and performance of fly ash-based concrete anticorrosion coatings[J]. Paint & Coatings Industry, 2019, 49(1): 22-26. [12] 孙世安, 校云鹏, 费逸伟, 等. 聚合物水泥基复合材料的防腐性能研究[J]. 表面技术, 2012, 41(5): 60-63.SUN Shian, XIAO Yunpeng, FEI Yiwei, et al. Research on anti-corrosion properties of polymer cement-based composite material[J]. Surface Technology, 2012, 41(5): 60-63. [13] 饶志华, 邓成辉, 马倩芸, 等. CCUS井工况下不同引晶材料对水泥石裂缝自愈合过程的影响[J]. 钻井液与完井液, 2023, 40(4): 495-501.RAO Zhihua, DENG Chenghui, MA Qianyun, et al. Comparative study on effects of different crystallographic materials on self-healing of fractures in set cement under CCUS well work conditions[J]. Drilling Fluid & Completion Fluid, 2023, 40(4): 495-501. [14] 颜帮川, 李中, 刘先杰, 等. 粉煤灰及矿渣对水泥浆体系早期水化热效应的控制研究[J]. 硅酸盐通报, 2019, 38(1): 52-59.YAN Bangchuan, LI Zhong, LIU Xianjie, et al. Study on controlling effects of fly ash and slag on early hydration heat evaluation of cement slurry system[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 52-59. [15] 龚鹏, 程小伟, 武治强, 等. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 67-73. doi: 10.11896/cldb.21100107GONG Peng, CHENG Xiaowei, WU Zhiqiang, et al. Research on the effect of calcium carbonate whiskers on the self-healing of cement stone cracks induced by CO2[J]. Materials Reports, 2023, 37(7): 67-73. doi: 10.11896/cldb.21100107 [16] ZHANG X G, ZHENG Y Z, GUO Z M, et al. Effect of CO2 solution on portland cement paste under flowing, migration, and static conditions[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104179. doi: 10.1016/j.jngse.2021.104179 [17] 陈波. CO2对固井水泥石的腐蚀评价方法研究[D]. 成都: 西南石油大学, 2016.CHEN Bo. Research on the corrosion evaluation method of CO2 on cemented cement stone[D]. Chengdu: Southwest Petroleum University, 2016. -