Geopolymer Cement Slurry System for CCUS/CCS Wells
-
摘要: 针对CCUS/CCS井高浓度CO2环境下传统硅酸盐水泥体系易腐蚀、强度衰减、环空密封失效等问题,开发了一种低碳型地质聚合物水泥浆体系。该水泥浆体系以粉煤灰、矿渣等固体废物为基材,通过草酸钠与氢氧化钙反应生成的缓释型激活剂替代传统氢氧化钠,构建出具有稠化性能可调控、抗腐蚀能力强的新型胶凝体系。通过筛选外加剂,优化了水泥浆的流变性和耐腐蚀性。实验表明,该水泥浆体系在70℃~120℃下稠化时间可控,密度为1.85 g/cm3,24 h抗压强度可达40 MPa,弹性模量为6.5 GPa。经30 d CO2腐蚀后水泥石强度无衰退,渗透率增长仅为9%。现场应用于5口CCUS井,固井质量全部达标。研究成果为高腐蚀环境下的固井体系优化提供了新思路和工程实践依据。Abstract: Conventional silicate cement in CCUS/CCS wells is easy to be corroded by the high concentration of CO2, resulting in cement strength deterioration and failure of sealing in annular spaces. To deal with this problem, a low-carbon geopolymer cement slurry was developed. This cement slurry was formulated with solid wastes such as fly ash and slag as the basic materials, and a controlled-release activator produced by the reaction of sodium oxalate and Ca(OH)2 was used in the cement slurry to replace the commonly used NaOH. This new cement slurry has adjustable thickening performance and strong resistance to corrosion. The rheology and the corrosion resistance of the cement slurry are optimized with carefully selected additives. Experimental results show that this cement slurry, with its density being 1.85 g/cm3, has controllable thickening time at temperatures between 70℃ and 120℃, 24 h compressive strength of 40 MPa and elastic modulus of 6.5 GPa. After corrosion by CO2 for 30 d, the strength of the set cement does not decline, and the permeability of the set cement increases only by 9%. Five CCUS wells were cemented with this cement slurry, and the job quality all met the standards. The results of this study provide new ideas and engineering practice bases for optimizing the well cementing system used in a highly corrosive environment.
-
Key words:
- Geopolymer /
- Controlled-release activator /
- Well cementing slurry /
- CCUS well /
- CO2 corrosion /
- Compressive strength /
- Permeability
-
表 1 不同激活剂类型对稠化时间的影响
激活剂 t稠化/min 备注 SG-12NaOH 20 稠化时间极短,反应剧烈,难以调控 SG-12NC 225 直角稠化明显,过渡平稳 SG-12SC 240 直角稠化明显,过渡平稳 SG-12FC 15 稠化时间极短,难以调控 SG-12C2C 340 稠化时间最长,调控性最优 表 2 不同加量下加有不同降失水剂的地质聚合物水泥浆体系的失水量
加量/% FLAPI/mL FL-1 FL-2 FL-3 FL-4 FL-5 2 143 136 70 143 58 4 125 154 65 118 46 6 41 142 62 72 41 表 3 地质聚合物水泥浆体系稠化时间与缓凝剂加量关系
T/℃ EDTMPS/% t稠化/min 90 0.3 152 0.5 223 0.8 350 120 0.5 145 0.8 300 1.0 540 表 4 地质聚合物水泥浆体系综合性能测试结果
T/
℃流动度/
cmFL/
mL游离液/
%△ρ/
g·cm−3弹性模量/
GPa60 22 41 0 0 6.52 90 23 41 0 0.01 6.31 120 24 45 0 0.01 6.58 表 5 现场应用井概况
井号 井别 套管尺寸/
mm套管下深/
mmρ水泥浆/
g·cm−3固井质量 X井1 评价井 139.7 2155 1.85 合格 X井2 开发井 177.8 2824 1.85 合格 X井3 开发井 177.8 3946 1.85 合格 X井4 开发井 139.7 3704 1.85 合格 X井5 开发井 139.7 4019 1.85 合格 -
[1] 饶志华, 邓成辉, 马倩芸, 等. CCUS井工况下不同引晶材料对水泥石裂缝自愈合过程的影响[J]. 钻井液与完井液, 2023, 40(4): 495-501. doi: 10.12358/j.issn.1001-5620.2023.04.012RAO Zhihua, DENG Chenghui, MA Qianyun, et al. Comparative study on effects of different crystallographic materials on self-healing of fractures in set cement under CCUS well work conditions[J]. Drilling Fluid & Completion Fluid, 2023, 40(4): 495-501. doi: 10.12358/j.issn.1001-5620.2023.04.012 [2] 王典, 李军, 刘鹏林, 等. 碳封存区块内弃置井泄露机制及控制方法模拟[J]. 钻井液与完井液, 2023, 40(3): 384-390. doi: 10.12358/j.issn.1001-5620.2023.03.015WANG Dian, LI Jun, LIU Penglin, et al. Simulation study of sealing integrity in abandoned wells within CO2 sequestration block[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 384-390. doi: 10.12358/j.issn.1001-5620.2023.03.015 [3] 陆晓如. 勘探开发面临五大理论技术挑战——专访中国科学院院士贾承造[J]. 中国石油石化, 2025(3): 14-17. doi: 10.3969/j.issn.1671-7708.2025.03.003LU Xiaoru. Exploration and development face five major theoretical and technological challenges-interview with Academician Jia Chengzao of the Chinese Academy of Sciences[J]. China Petrochem, 2025(3): 14-17. doi: 10.3969/j.issn.1671-7708.2025.03.003 [4] 雍锐. 西南油气田CCUS/CCS发展现状、优势与挑战[J]. 天然气工业, 2024, 44(4): 11-24. doi: 10.3787/j.issn.1000-0976.2024.04.002YONG Rui. Development status, advantages and challenges of CCUS/CCS in Petro China Southwest oil & gasfield company[J]. Natural Gas Industry, 2024, 44(4): 11-24. doi: 10.3787/j.issn.1000-0976.2024.04.002 [5] 武治强, 武广瑷, 幸雪松. CO2腐蚀-应力耦合下固井水泥环密封完整性[J]. 钻井液与完井液, 2024, 41(2): 220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012WU Zhiqiang, WU Guangai, XING Xuesong. Sealing integrity of cement sheath under the condition of CO2 Corrosion-Stress coupling[J]. Drilling Fluid & Completion Fluid, 2024, 41(2): 220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012 [6] 王熹颖. CO2地质封存与利用环境下水泥单矿C2S的腐蚀速率[J]. 钻井液与完井液, 2024, 41(5): 646-653. doi: 10.12358/j.issn.1001-5620.2024.05.012WANG Xiying. Study on corrosion rate of cement monomineralic C2S in CO2 geological sequestration environment[J]. Drilling Fluid & Completion Fluid, 2024, 41(5): 646-653. doi: 10.12358/j.issn.1001-5620.2024.05.012 [7] 张华, 靳建洲, 刘明涛, 等. 稠油热采井抗350℃高温硅酸盐基水泥浆[J]. 钻井液与完井液, 2020, 37(3): 363-366. doi: 10.3969/j.issn.1001-5620.2020.03.016ZHANG Hua, JIN Jianzhou, LIU Mingtao, et al. A 350℃ high temperature silicate cement slurry used in cementing heavy oil thermal production wells[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 363-366. doi: 10.3969/j.issn.1001-5620.2020.03.016 [8] 戴晨东, 王正权, 吴浩, 等. 粉煤灰-矿渣地质聚合物套管浮鞋芯体材料的室内研究[J]. 硅酸盐通报, 2018, 37(12): 3769-3775,3794.DAI Chendong, WANG Zhengquan, WU Hao, et al. Laboratory investigation on fly ash-slag geopolymer core material for casing float shoe[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3769-3775,3794. [9] 秦仲奎, 董志明, 浦健, 等. 基于粉煤灰-矿渣胶凝增强材料的研究与应用[J]. 钻井液与完井液, 2023, 40(4): 527-534. doi: 10.12358/j.issn.1001-5620.2023.04.016QIN Zhongkui, DONG Zhiming, PU Jian, et al. Study and application of a fly ash-slag bonding reinforcement material[J]. Drilling Fluid & Completion Fluid, 2023, 40(4): 527-534. doi: 10.12358/j.issn.1001-5620.2023.04.016 [10] GUO S L, BU Y H, LIU H J, et al. The abnormal phenomenon of class G oil well cement endangering the cementing security in the presence of retarder[J]. Construction and Building Materials, 2014, 54: 118-122. doi: 10.1016/j.conbuildmat.2013.12.057 [11] 杨威, 赵胜绪, 石礼岗. 地质聚合物在油田固井中的应用[J]. 云南化工, 2022, 49(4): 17-20. doi: 10.3969/j.issn.1004-275X.2022.04.05YANG Wei, ZHAO Shengxu, SHI Ligang. Recent developments of geopolymer as oil well cement[J]. Yunnan Chemical Technology, 2022, 49(4): 17-20. doi: 10.3969/j.issn.1004-275X.2022.04.05 [12] 殷慧, 柳华杰, 季成元, 等. 偏高岭土活性影响因素及其碱激发反应研究进展[J]. 钻井液与完井液, 2024, 41(4): 419-426. doi: 10.12358/j.issn.1001-5620.2024.04.001YIN Hui, LIU Huajie, JI Chengyuan, et al. Progress in studying affecting factors and alkaline-activated reaction of activity of metakaolin[J]. Drilling Fluid & Completion Fluid, 2024, 41(4): 419-426. doi: 10.12358/j.issn.1001-5620.2024.04.001 -