Synthesis and Application of an Ultra-High Temperature Low Viscosity Filter Loss Reducer
-
摘要: 针对传统聚合物类降失水剂表观黏度大导致高密度水泥浆体系初始稠度过高,影响施工安全的技术性难题,以2-丙烯酰胺-2-甲基丙磺酸、乙烯基芳香羧酸、N,N-二甲基丙烯酰胺和丙烯酸为单体,通过自由基聚合法合成了一种四元低黏度降失水剂SCFL-W。产物的最佳合成条件为:反应温度75℃,pH值7,单体浓度19 %,反应时间150 min。利用红外光谱(FT-IR)确定了聚合产物的分子结构,通过热重分析(TGA)测得SCFL-W热分解温度大于380℃,表明其具有良好的热稳定性。机理研究表明,由于SCFL-W分子结构中含有烯烃键和苯环等刚性侧链,侧链之间难以形成缠结分支,有效降低聚合物黏度;其优异的控失水性能是低黏聚合物促进致密滤饼形成及芳环羧基静电吸附的协同效应。水泥浆性能表征显示,SCFL-W高温下黏度保持率高,与多种助剂配伍性能好,饱和盐水体系中240℃ API失水量为45 mL,抗盐性能优异,可用于1.88~2.4 g/cm3水泥浆体系。SCFL-W降失水剂现场应用3井次,固井质量优质,该降失水剂的成功应用为超高温高密度水泥浆的构建提供了新思路。Abstract: Traditional polymer filter loss reducers have high apparent viscosity, causing high density cement slurries to have excessive initial consistency and hence affecting negatively operation safety. To deal with this problem, a low viscosity quaternary copolymer filter loss reducer SCFL-W was developed with four monomers: 2-acrylamide-2-methylpropanesulfonic acid, vinyl aromatic carboxylic acid, N, N-dimethylacrylamide and acrylic acid. The optimum reaction condition is: reaction temperature = 75℃, pH = 7, monomers’ concentration = 19%, and reaction time = 150 min. The molecular structure of SCFL-W is determined with FT-IR and TGA used to measure the thermal decomposition temperature to be greater than 380℃, meaning that SCFL-W has good thermal stability. Mechanism study proves that in the molecular structure of SCFL-W there are rigid side chains such as olefinic bonds and aromatic rings, among them entangling branches are difficult to form, thereby reducing the viscosity of the polymer. The excellent filtration rate control performance comes from the synergistic effect between the dense mud cakes formed under the action of the low-viscosity polymer and the static adsorption of the aromatic ring carboxyl groups. Evaluation of the performance of cement slurries treated with the filter loss reducer shows that SCFL-W retains most of its viscosity at elevated temperatures and has good compatibility with many additives. SCFL-W has good salt resistance. At 240℃, it reduces the API filtration rate of a saturated salt cement slurry to 45 mL. SCFL-W can be used in cement slurries with densities ranging in 1.88-2.4 g/cm3. Three well-times of field application of SCFL-W show that the quality of well cementing jobs is excellent. The successful use of this filter loss reducer has provided a new clue to the formulation of ultra-high temperature high density cement slurries.
-
表 1 180~240℃区间SCFL-W降失水剂与缓凝剂的配伍性评价
T/
℃SCR-4/
%SCR-7/
%SCFL-W/
%FL/
mL初始
稠度/Bct40 Bc/
mint稠化/
min180 0 2 5 315 323 6 2 4 150 5 382 390 8 0 10 20 7 353 362 200 8 2 15 29 9 389 400 220 10 2 15 46 10 505 510 240 10 2 20 44 12 469 472 表 2 降失水剂表观黏度、失水量和吸附量的关系
编号 50%水溶液表观
黏度/mPa·sFL/
mL吸附量/
mg·L−11 77 90 240 2 73 36 253 3 70 26 263 4 67 38 254 5 57 44 208 6 35 80 171 表 3 SCFL-W降失水剂应用情况
应用井次 水泥浆体系 套管尺寸/
mm井深/
mT/
℃ρ/
g·cm−3固井
质量元深1短回接 抗高温高密度防窜水泥浆体系(1#配方) Φ139.7 8866 170 2.20 优质 且深1三开 抗高温常规密度乳液水泥浆体系(2#配方) Φ 200.0 8483 190 1.88 优质 且深1四开 抗高温高密度欠饱和盐水水泥浆体系(3#配方) Φ 154.0 8754 196 2.30 优质 注:1#配方:水泥(JHG)+50%细硅粉(SiO2)+70%铁矿粉+5%降失水剂SCFL-W+11%缓凝剂SCR-4+0.5%早强剂H-T+5%纳米液硅SCLS+10%树脂乳液SCJR+34%现场水;2#配方:水泥(KG)+50%细硅粉(SiO2)+8%锰粉+10%降失水剂SCFL-W+6.5%缓凝剂SCR-4+0.5%早强剂H-T+6%纳米乳液SCLS+6%树脂乳液SCJR+46%现场水;3#配方:水泥(KG)+50%复合防衰退材料(硅粉∶SCW=1∶1)+30%铁矿粉+85%还原铁粉+40%锰粉+15%降失水剂SCFL-W + 8%缓凝剂SCR-4+1.5%缓凝剂SCR-7 +1.4%消泡剂SCD-L+8%盐+1%消泡剂+63%净化水。 -
[1] 崔强. 新型抗盐抗高温降失水剂应用研究[D]. 成都: 西南石油大学, 2017.CUI Qiang. Study on the application of a new type of high temperature resistant and salt resistant filtrate reducer[D]. Chengdu: Southwest Petroleum University, 2017. [2] 夏修建, 于永金, 靳建洲, 等. 耐高温抗盐固井降失水剂的制备及性能研究[J]. 钻井液与完井液, 2019, 36(5): 610-616. doi: 10.3969/j.issn.1001-5620.2019.05.015XIA Xiujian, YU Yongjin, JIN Jianzhou, et al. Development and study on a high temperature salt resistant filter Loss reducer for well cementing[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 610-616. doi: 10.3969/j.issn.1001-5620.2019.05.015 [3] 严思明, 杨坤, 王富辉, 等. 新型耐高温油井降失水剂的合成与性能评价[J]. 石油学报, 2016, 37(5): 672-679. doi: 10.7623/syxb201605011YAN Siming, YANG Kun, WANG Fuhui, et al. Synthesis and performance evaluation of novel high-temperature-resistant fluid loss additive for oil wells[J]. Acta Petrolei Sinica, 2016, 37(5): 672-679. doi: 10.7623/syxb201605011 [4] 夏修建. 高温深井固井用聚合物/纳米SiO2复合添加剂的研究[D]. 天津: 天津大学, 2017.XIA Xiujian. Polymer/silica nanocomposite as functional oil well cement additives for deep/ultra deep oil and gas wells cementing[D]. Tianjin: Tianjin University, 2017. [5] STEPHENS M. Fluid loss additives for well cementing compositions: US, US 5294651[P]. 2017-02-06. [6] EOFF L S, REDDY R B. Well cement additives, compositions and methods: US10281773[P]. 2003-05-22. [7] REDDY R B, RILEY W D. High temperature viscosifying and fluid loss controlling additives for well cements, well cement compositions and methods: US, US6770604 [P]. 2017-02-16.REDDY R B, RILEY W D. High temperature viscosifying and fluid loss controlling additives for well cements, well cement compositions and methods: US, US6770604 [P]. 2017-02-16. [8] 于永金, 张航, 夏修建, 等. 超高温固井水泥浆降失水剂的合成与性能[J]. 钻井液与完井液, 2022, 39(3): 352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014YU Yongjin, ZHANG Hang, XIA Xiujian, et al. Synthesis and study of an ultra-high temperature filtrate reducer for cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014 [9] 王其可, 刘文明, 凌勇, 等. ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价[J]. 钻井液与完井液, 2023, 40(5): 629-636. doi: 10.12358/j.issn.1001-5620.2023.05.012WANG Qike, LIU Wenming, LING Yong, et al. The synthesis of ATP loaded heterocyclic amphoteric copolymer and its performance and mechanisms of reducing filtration rate under ultra-high temperatures[J]. Drilling Fluid & Completion Fluid, 2023, 40(5): 629-636. doi: 10.12358/j.issn.1001-5620.2023.05.012 [10] 王志刚, 王稳石, 张立烨, 等. 万米科学超深井钻完井现状与展望[J]. 科技导报, 2022, 40(13): 27-35.WANG Zhigang, WANG Wenshi, ZHANG Liye, et al. Present situation and prospect of drilling and completion of 10000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13): 27-35. [11] 韩成, 罗鸣, 刘忠宝, 等. 莺琼盆地半潜式平台超高温高压钻井取心技术[J]. 钻采工艺, 2021, 44(4): 28-30. doi: 10.3969/J.ISSN.1006-768X.2021.04.07HAN Cheng, LUO Ming, LIU Zhongbao, et al. Ultra-HPHT drilling coring technology for semi-submersible platform in Yingqiong basin[J]. Drilling & Production Technology, 2021, 44(4): 28-30. doi: 10.3969/J.ISSN.1006-768X.2021.04.07 [12] 佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示[J]. 天然气工业, 2024, 44(1): 40-48. doi: 10.3787/j.issn.1000-0976.2024.01.004SHE Zhaoyi. Progress in ultra-deep drilling and completion technology in the Sichuan basin and its implications for extra-deep wells of more than ten thousand meters in depth[J]. Natural Gas Industry, 2024, 44(1): 40-48. doi: 10.3787/j.issn.1000-0976.2024.01.004 [13] MAHDI ABBASI, LORENZ FAUST, MANFRED WILHELM. Comb and bottlebrush polymers with superior rheological and mechanical properties[J]. Advanced Materials, 2019: 1806484. doi: 10.1002/adma.201806484 -