A Method of Evaluating Drilling Fluid’s Dynamic Adhesiveness
-
摘要: 大部分传统钻井液润滑测试仪只考虑金属界面的相互作用,忽略了钻具与钻井液、钻井液泥饼、井壁间黏滞力对润滑效果的影响,导致润滑剂的润滑性能评价结果与现场实际表现不一致。通过模拟钻井中钻具与井壁、钻具与钻井液及泥饼间的相互作用,设计了一套钻井液动态黏滞性能测试仪。实验结果表明,钻井液动态黏滞性能测试仪操作简单,可评价不同压力、转速条件下的扭矩变化,评价结果准确、重复性高,能有效预防井下卡钻事故的发生。Abstract: Most of the traditional drilling fluid lubricity testers only consider the interaction between the interfaces of metals, and omit the effects of the adhesiveness between the drilling tools and drilling fluid, mud cakes and borehole walls on the lubricity of the drilling fluid, causing an inconformity between the evaluation results and the actual field performance of a lubricant. By simulating the interaction between the drilling tool and the borehole wall, the drilling tool and the drilling fluid as well as the drilling tool and the mud cake, a drilling fluid’s dynamic adhesiveness tester was developed. Experimental results show that the drilling fluid’s dynamic adhesiveness tester is easy to operate, and can be used to evaluate torque fluctuations under different pressures and rotational speeds. The results of the evaluation with this tester are accurate and highly repeatable, and can be used to effectively prevent stuck pipe accidents from occurring.
-
Key words:
- Frictional resistance /
- Lubricity /
- Lubricity tester /
- Adhesiveness
-
图 1 钻井液动态黏滞性能测试仪结构
1-记录仪、2-旋转开关、3-制动开关、4-直线开关、5-旋转控制器、6-直线控制器、7-压力控制器、8-转速1、9-转速2、10-转速3、11-旋转停止、12-直线开启、13-上升开关、14-下降开关、15-直线停止、16-控制面板、17-防护罩、18-扭矩传感器、19-旋转轴、20-旋转摩擦盘、21-沙盘、22-泥饼、23-密封圈、24-球面轴承、25-底座、26-压力传感器连接处、27-压力传感器与弹簧连接处、28-压力传感器、29-弹簧、30-升降螺杆、31-升降螺母、32-风机、33-固定轴(4根)、34-上固定板、35-直线轴承4个、36-滑杆、37-下固定板、38-台面、39-风机面板、40-橡胶脚、41-螺杆、步进电机连接器、42-步进电机
表 1 钻井液黏滞性能测试仪主要技术指标
序号 名称 技术参数 1 最大工作压力 147 N(15 kgf) 2 最大转速 1000 r/min 3 测量分辨率 0.1 N·m 4 综合测量误差 <1.5‰ 5 沙盘直径 6.3 cm 6 沙盘厚度 0.635 cm 7 有效沙盘直径 4.5 cm 表 2 3%CX300润滑剂在聚合物水基钻井液中的润滑性能
聚合物体系 扭矩 润滑系数降低率/% 空白 21.0/19.5/14.0/17.0 3%CX300 8/13/9/10 59.85/30.35/36.84/43.62 -
[1] 刘仕银, 成增寿, 叶道平, 等. 不混油低摩阻钻井液在塔河托甫台区块的现场试验[J]. 西部探矿工程, 2018, 30(11): 63-65,68. doi: 10.3969/j.issn.1004-5716.2018.11.021LIU Shiyin, CHENG Zengshou, YE Daoping, et al. Field test of non-oil-mixing low-friction drilling fluid in the Tahe Tuofutai block[J]. West-China Exploration Engineering, 2018, 30(11): 63-65,68. doi: 10.3969/j.issn.1004-5716.2018.11.021 [2] 常喜顺, 张金成. 陕北油田定向井卡钻原因分析及处理对策[J]. 西部探矿工程, 2007(1): 66-68. doi: 10.3969/j.issn.1004-5716.2007.01.027CHANG Xishun, ZHANG Jincheng. Analysis of sticking causes and treatment strategies in directional wells of northern Shaanxi oilfield[J]. West-China Exploration Engineering, 2007(1): 66-68. doi: 10.3969/j.issn.1004-5716.2007.01.027 [3] 邓兴强. 深层水平井钻井液技术难点及设计方案研究[J]. 西部探矿工程, 2019, 31(6): 85-86. doi: 10.3969/j.issn.1004-5716.2019.06.031DENG Xingqiang. Research on technical difficulties and design schemes of deep horizontal well drilling fluids[J]. West-China Exploration Engineering, 2019, 31(6): 85-86. doi: 10.3969/j.issn.1004-5716.2019.06.031 [4] XU Y D. Analysis of drag mechanism and discussion of countermeasures in directional drilling[J]. China New Technologies and Products, 2017(19): 51-52. [5] YANG Y C. Research on stress analysis and control technology of casing in horizontal wells[D]. Beijing: China University of Petroleum(Beijing), 2018. [6] 周风山, 蒲春生, 倪文学. LEM-Ⅱ钻井液润滑仪合理使用方法的研究[J]. 西安石油学院学报(自然科学版), 1998(6): 21-24.ZHOU Fengshan, PU Chunsheng, NI Wenxue. Study on the rational use method of LEM-Ⅱ drilling fluid lubricity tester[J]. Journal of Xi'an Petroleum Institute(Natural Science Edition), 1998(6): 21-24. [7] JI W Y. Research on intelligent identification methods and optimization of handling procedures for sticking accidents during drilling[D]. Beijing: China University of Petroleum(Beijing), 2019. [8] YE Q, JIA X J. Causes and treatment methods of differential pressure sticking accidents in directional drilling[J]. China Well and Rock Salt, 2010, 41(4): 20-22. [9] 许明标, 由福昌, 吴娇. 一种模拟井下钻井液泥饼动态摩阻的测试装置: CN208000264U[P]. 2018-03-14.XU Mingbiao, YOU Fuchang, WU Jiao. A testing device for simulating dynamic friction of drilling fluid mud cake downhole: CN208000264U[P]. 2018-03-14. [10] 吕聪. 钻井液黏滞力作用下大位移井附加摩阻扭矩计算分析[J]. 石化技术, 2019, 26(8): 54-56. doi: 10.3969/j.issn.1006-0235.2019.08.035LYU Cong. Calculation and analysis of additional drag and torque in extended-reach wells under the action of drilling fluid viscous force[J]. Petrochemical Industry Technology, 2019, 26(8): 54-56. doi: 10.3969/j.issn.1006-0235.2019.08.035 [11] 王小利, 李晓明. 大位移深定向探井钻进技术在永斜927井的应用[J]. 西部探矿工程, 2007(1): 77-78. doi: 10.3969/j.issn.1004-5716.2007.01.031WANG Xiaoli, LI Xiaoming. Application of drilling technology for extended-reach deep directional exploration well in Yongxie 927 well[J]. West-China Exploration Engineering, 2007(1): 77-78. doi: 10.3969/j.issn.1004-5716.2007.01.031 [12] 赵虎. 钻井液润滑性评价方法对比研究[J]. 石油工业技术监督, 2021, 37(4): 24-27. doi: 10.3969/j.issn.1004-1346.2021.04.008ZHAO Hu. Comparative study on evaluation methods of drilling fluid lubricity[J]. Technology Supervision in Petroleum Industry, 2021, 37(4): 24-27. doi: 10.3969/j.issn.1004-1346.2021.04.008 -