The Application of an Oil-Based Drilling Fluid with Strong Plugging Capacity in Pilot Test Shale Oil Wells in Qibei Area
-
摘要: 大港油田歧北页岩油已探明的未动用页岩油储量仍非常大,且埋深可达4500 m及以上,该油气富集区均分布于沙河街储层,黏土含量高且层间孔隙微裂缝发育,易发生井壁失稳起下钻阻卡。为解决上述技术难题,该区块3口先导试验水平井首次设计使用油基钻井液进行施工,引入2%纳米胶乳、2%复配粒径碳酸钙和2%氧化沥青,运用颗粒级配,研究并形成了一套强封堵油基钻井液体系。在现场应用过程中,该油基钻井液体系750 mD砂盘滤失量可降至0.8 mL,封堵了地层微裂缝,减少滤液对地层侵入,强化了井壁稳定性。其中QY6-31-2井钻井周期为40.98 d,刷新集团公司6501~7000 m钻井周期最短记录,创大港油田(水平井)页岩油完钻井深最深(6558 m)等5项指标,保证了先导试验井顺利施工。Abstract: The proved undeveloped shale oil reserves in block Qibei of Dagang oilfield are still very high and their burial depths can be 4,500 m or deeper. This oil and gas enrichment area is located in the Shahejie reservoir which has high content of clays as well as developed interlayer pores and microfractures. Past experiences show that borehole wall instability and difficulties in tripping of drill strings have been encountered. To deal with these problems, three pilot test wells were drilled first in this area with oil-based drilling fluids. In laboratory studies an oil-based drilling fluid was formulated with 2% nanolatex, 2% sized calcium carbonate and 2% oxidized asphalt. Sizing of the particles rendered the drilling fluid high plugging capacity. In field application, the filtration rate of this drilling fluid through 750 mD sand-disks was reduced to 0.8 mL because the particles in the drilling fluid plugged the formation, minimizing the volume of the filtrates into the formations. In this way the wellbore stability was improved. The well QY6-31-2 was drilled in 40.98 d, refreshing PetroChina’s shortest drilling time record of wells with depths raging in 6501-7000 m, and setting 5 records in Dagang oilfield, such as the deepest completed well (6558 m) of horizontal shale oil wells. The use of oil-based drilling fluid has ensured the smooth construction of the pilot test wells.
-
Key words:
- Strongly plug /
- Particle sizing /
- Oil-based drilling fluid /
- Deep shale oil
-
表 1 岩样的孔隙率及孔径测定( GB/T 21650.1—2008)
岩样 平均孔隙率/% 平均孔径/μm 1# 79.032 10.255 2# 81.117 8.522 3# 71.010 1.589 4# 75.271 0.125 表 2 全岩矿物组成和黏土矿物组成
全岩矿物组成/% 黏土矿物组成/% 石英 长石 方解石 白云石 黄铁矿 黏土矿物 伊利石 蒙脱石 伊蒙混层 高岭石 绿泥石 26.24 8.02 21.25 13.49 3.01 27.99 37.70 0.00 56.07 0.4 5.83 表 3 不同封堵剂的粒径测试(GB/T 19077—2016)
封堵剂 D10/μm D50/μm D90/μm 纳米胶乳 0.112 0.168 0.242 氧化沥青 1.067 10.350 100.8 微硅粉 7.429 33.70 105.700 聚氨酯纤维 7.113 47.810 163.100 纳米聚酯 0.357 0.618 6.190 纳米聚合物 0.066 0.113 0.203 表 4 在油基钻井液中加入不同封堵剂的性能
封堵剂 PV/
mPa·sYP/
PaFLHTHP/
mL渗透滤
失量/mL0 32 6.5 5.8 5.2 2%纳米胶乳 32 6.0 3.2 2.8 2%氧化沥青 35 7.0 3.8 3.2 2%微硅粉 32 6.5 5.6 5.4 2%聚氨酯纤维 34 7.0 5.4 5.2 2%纳米聚酯 34 7.0 5.0 4.8 2%纳米聚合物 35 7.5 4.8 4.4 0.5%碳酸钙(600目)+
0.5%碳酸钙(800目)+
1%碳酸钙(1250目)33 6.5 3.4 3.0 表 5 在油基钻井液中加入不同封堵剂的性能对比
封堵剂 PV/
mPa·sYP/
PaFLHTHP/
mL渗透滤失量/
mL4%纳米胶乳FDJ 32 6.5 2.8 2.6 6%纳米胶乳FDJ 31 6.0 2.6 2.4 4%氧化沥青 35 7.0 3.6 3.0 6%氧化沥青 36 7.0 3.2 2.8 4% 碳酸(600目∶800目∶1250目=1∶1∶2) 34 6.5 3.2 2.8 6%碳酸钙(600目∶800目∶1250目=1∶1∶2) 35 7.5 3.0 2.6 4%纳米胶乳FDJ+2% 氧化沥青 33 6.0 2.6 2.4 3%纳米胶乳FDJ+2% 氧化沥青+1%碳酸钙(600目∶800目∶1250目=1∶1∶2) 35 7.0 2.4 2.0 2%纳米胶乳FDJ+2% 氧化沥青+2%碳酸钙(600目∶800目∶1250目=1∶1∶2) 36 6.5 1.6 1.0 表 6 强封堵油基钻井液的抗温性能
实验
条件PV/
mPa·sYP/
PaGel/
Pa/PaES/
VFLHTHP /
mL65℃ 37.0 4.5 3.0/4.5 1130 150℃、16 h 36.0 6.5 4.5/6.5 1312 1.6 160℃、16 h 33.0 4.0 4.5/7.0 1327 1.8 170℃、16 h 37.0 3.5 4.5/7.0 1346 1.8 170℃、24 h 34.0 3.5 5.0/7.5 1355 2.0 170℃、48 h 33.5 3.0 4.5/7.5 1302 2.2 170℃、72 h 32.0 3.0 4.5/7.0 1247 2.2 表 7 强封堵油基钻井液封堵滤失量测试
渗透率 不同时间(min)的FL/mL PPT/
mL瞬时滤失量/
mL静滤失速率/
mL/min1/21 5 7.5 15 25 30 400 mD 0.0 0.0 0.2 0.2 0.3 0.4 0.8 0.0 0.146 750 mD 0.1 0.3 0.5 0.7 0.9 1.0 2.0 0.0 0.365 2 D 0.3 0.8 1.0 1.2 1.6 1.8 3.6 0.4 0.584 5 D 0.6 0.9 1.2 1.3 1.6 2.1 4.2 0.6 0.657 表 8 常规油基钻井液封堵滤失量测试
渗透率 不同时间(min)的FL/mL PPT/
mL瞬时滤失量/
mL静滤失速率/
mL/min1/21 5 7.5 15 25 30 400 mD 0.0 0.3 0.7 1.0 1.1 1.3 2.6 0.2 0.438 750 mD 0.2 0.4 1.0 1.4 1.5 1.8 3.6 0.4 0.584 2D 0.2 0.8 1.6 2.0 2.8 3.1 6.2 0.2 1.095 5D 0.6 1.2 1.9 2.4 3.0 3.4 6.8 0.8 1.095 表 9 钻井液的高温高压流变性能(ρ=1.7 g/cm3)
T/℃ P/MPa φ600 φ300 φ200 φ100 φ6 φ3 AV/mPa·s PV/mPa·s YP/Pa 65 常压 78 53.0 41 28.0 5.5 4.5 39.0 25.0 14.0 100 30 72 43.0 33 22.0 8.0 7.0 36.0 29.0 7.0 100 50 86 51.0 39 25.0 8.5 7.6 43.0 35.0 8.0 100 70 105 60.0 45 28.0 8.0 7.0 52.5 45.0 7.5 100 90 127 73.0 54 33.5 9.4 8.3 63.5 54.0 9.5 120 30 62 36.0 24 16.0 5.0 4.0 31.0 26.0 5.0 120 50 69 39.0 29 19.0 5.5 4.9 34.5 30.0 4.5 120 70 90 51.0 36 22.5 6.2 5.3 45.0 39.0 6.0 120 90 100 55.0 41 26.0 6.8 6.0 50.0 45.0 5.0 150 30 49 28.0 17 12.0 5.0 4.7 24.5 21.0 3.5 150 50 54 34.0 20 14.0 5.4 5.0 27.0 21.0 4.0 150 70 62 36.0 24 16.0 5.9 5.5 31.0 26.0 5.0 150 90 70 40.0 28 19.0 6.5 5.8 35.0 30.0 5.0 170 30 45 25.5 16 11.0 4.5 3.8 22.5 19.5 3.0 170 50 52 30.0 20 14.0 4.8 4.7 26.0 22.0 4.0 170 70 59 34.0 23 15.0 5.3 4.9 29.5 25.0 4.5 170 90 74 44.0 34 22.0 6.7 6.0 37.0 30.0 7.0 表 10 应用井目的层位沙三1C1的基本情况
井号 井深/
m垂深/
m最大井
斜/(°)水平
位移/m平均机械转速/
m·h−1QY6-31-1 5530 3748.62 83.73 1982 16.03 QY6-31-2 6558 3894.52 95.56 2510 16.27 QY6-31-3 6460 3875.85 95.45 2102 14.29 表 11 QY6-31-2井的井身结构
开钻
次序井眼尺寸/
mm井深/
m套管尺寸/
mm套管下深/
m一开 444.5 721 339.7 720 二开 311.2 3182 244.5 3180 三开 215.9 6558 139.7 6555 表 12 QY6-31-2井现场钻井液性能
序号 井深/
mρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaES/
VFLHTHP /
mLPPT/
mL1 3208 1.60 37.5 31.0 6.5 2.0/3.5 869 1.6 1.0 2 3444 1.60 36.0 30.0 6.0 2.5/4.5 872 1.6 1.0 3 3829 1.62 36.5 29.0 7.5 3.5/5.0 1013 1.8 1.6 4 4115 1.64 37.0 29.0 8.0 3.5/5.5 1025 1.8 1.4 5 4606 1.65 39.5 31.0 8.5 4.0/6.5 968 1.8 1.8 6 4762 1.65 40.0 32.0 8.0 4.0/6.5 926 1.6 1.4 7 5230 1.65 41.5 33.0 8.5 4.0/70 910 1.6 1.4 8 5816 1.65 43.0 34.0 9.0 4.5/7.5 985 1.6 1.4 9 6127 1.65 44.5 35.0 9.5 4.5/7.5 997 1.4 1.2 10 6558 1.65 44.5 35.0 9.5 4.5/7.5 989 1.2 0.8 注:3208~4115 m井段的 FLHTHP在150℃测定,4606~6558 m井段的FLHTHP在170℃下测定;测试封堵滤失量的砂盘均为750 mD。 表 13 QY6-31-2井现场气测点火记录
序号 井深/
mρ/
g·cm−3ρmin/
g·cm−3点火持续
时间/min作业
时段点火
次数1 4158 1.64 1.63 15 钻进 1 2 4334 1.65 1.63 15 钻进 1 3 5620 1.65 1.63 80 起下钻 5 4 5757 1.65 1.64 18 钻进 1 5 6558 1.65 1.64 543 起下钻/下套管 12 表 14 QY6-31-2井不同井段气体污染后性能(ρ=1.65 g/cm3)
井深/
mρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaES/
VFLHTHP /
mLPPT/
mL4158 1.65 37.0 29.0 8.0 3.5/5.0 896 1.6 1.0 4334 1.65 37.5 29.0 8.5 3.5/6.0 996 1.8 1.6 5620 1.65 41.0 32.0 9.0 4.5/7.0 859 2.0 1.2 5757 1.65 48.0 39.0 9.0 4.5/7.5 963 2.0 1.4 6558 1.65 47.5 38.0 9.5 4.5/7.5 1125 2.2 2.0 -
[1] 叶文辉. 歧口凹陷歧北次凹沙三段页岩油地质特征及甜点预测[D]. 北京: 中国石油大学(北京), 2022.YE Wenhui. Geological characteristics and sweet pot prediction of shale oil in member 3 of Shahejie formation in qibei subsag, qikou sag[D]. Beijing: China University of Petroleum (Beijing), 2022. [2] 李广环, 龙涛, 周涛, 等. 大港油田南部页岩油勘探开发钻井液技术[J]. 钻井液与完井液, 2020, 37(2): 174-179. doi: 10.3969/j.issn.1001-5620.2020.02.007LI Guanghuan, LONG Tao, ZHOU Tao, et al. Drilling fluid technology for exploration and development of shale oil in South of Dagang oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 174-179. doi: 10.3969/j.issn.1001-5620.2020.02.007 [3] 田同辉, 陆正元, 戚明辉, 等. 东营凹陷沙河街组页岩油储层微观孔隙结构研究[J]. 西南石油大学学报, 2017, 39(6): 10-18.TIAN Tonghui, LU Zhengyuan, QI Minghui, et al. Study on microscopic pore structure of shale oil reservoir in Shahejie formation in the Dongying sag[J]. Journal of Southwest Pretroleum University, 2017, 39(6): 10-18. [4] 艾磊, 高云文, 欧阳勇, 等. 适用于页岩油钻井的低伤害防塌水基钻井液体系[J]. 钻井液与完井液, 2023, 40(5): 602-610.AI Lei, GAO Yunwen, OU YANG Yong, et al. Low damage highly inhibitive water based drilling fluid for drilling shale oil reservoir[J]. Drilling Fluid & Completion Fluid, 2023, 40(5): 602-610. [5] 张金波, 鄢捷年. 钻井液暂堵剂颗粒粒径分布的最优化选择[J]. 油田化学, 2005, 22(1): 1-5. doi: 10.3969/j.issn.1000-4092.2005.01.001ZHANG Jinbo, YAN Jienian. Optimization of particle size distribution for temporarily plugging/shielding agents in water base reservoir drilling fluids[J]. Oilfield Chemistry, 2005, 22(1): 1-5. doi: 10.3969/j.issn.1000-4092.2005.01.001 [6] 李建华, 窦成义, 李庆钊. 基于颗粒级配的密封黏液制备及应用[J]. 陕西煤炭, 2022, 41(4): 5-9. doi: 10.3969/j.issn.1671-749X.2022.04.002LI Jianhua, DOU Chengyi, LI Qingzhao. Preparation and application of sealing mucus based on particle gradation[J]. Shaanxi Meitan, 2022, 41(4): 5-9. doi: 10.3969/j.issn.1671-749X.2022.04.002 [7] 赵志强, 苗海龙, 耿铁. 钻井液暂堵颗粒粒径优化软件开发及室内评价[J]. 钻井液与完井液, 2015, 32(1): 42-45. doi: 10.3969/j.issn.1001-5620.2015.01.11ZHAO Zhiqiang, MIAO Hailong, GENG Tie. Development and appraisal of computer software for optimization of particle size of temporary plugging agent[J]. Drilling Fluid & Completion Fluid, 2015, 32(1): 42-45. doi: 10.3969/j.issn.1001-5620.2015.01.11 [8] YANG H B, KANG W L, YU Y, et al. A new approach to evaluate the particle growth and sedimentation of dispersed polymer microsphere profile control system based on multiple light scattering[J]. Powder Technology, 2017, 315: 477-485. doi: 10.1016/j.powtec.2017.04.001 [9] 马超, 苏超, 周超, 等. 连续动态多重光散射法评价高密度油基钻井液稳定性[J]. 西安石油大学学报(自然科学版), 2018, 33(6): 112-117.MA Chao, SU Chao, ZHOU Chao, et al. Continuous dynamic multiple light scattering method for evaluating the stability of high-density oil-based drilling fluid[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2018, 33(6): 112-117. -