留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油基钻井液絮凝剂去除回收老浆有害固相

袁玥辉 耿愿 孙明昊 倪晓骁 严致远 王波

袁玥辉,耿愿,孙明昊,等. 油基钻井液絮凝剂去除回收老浆有害固相[J]. 钻井液与完井液,2025,42(5):623-630 doi: 10.12358/j.issn.1001-5620.2025.05.008
引用本文: 袁玥辉,耿愿,孙明昊,等. 油基钻井液絮凝剂去除回收老浆有害固相[J]. 钻井液与完井液,2025,42(5):623-630 doi: 10.12358/j.issn.1001-5620.2025.05.008
YUAN Yuehui, GENG Yuan, SUN Minghao, et al.Remove detrimental solids from recycled old drilling fluids using oil-based drilling fluid flocculants[J]. Drilling Fluid & Completion Fluid,2025, 42(5):623-630 doi: 10.12358/j.issn.1001-5620.2025.05.008
Citation: YUAN Yuehui, GENG Yuan, SUN Minghao, et al.Remove detrimental solids from recycled old drilling fluids using oil-based drilling fluid flocculants[J]. Drilling Fluid & Completion Fluid,2025, 42(5):623-630 doi: 10.12358/j.issn.1001-5620.2025.05.008

油基钻井液絮凝剂去除回收老浆有害固相

doi: 10.12358/j.issn.1001-5620.2025.05.008
基金项目: 中国石油集团工程技术研究院有限公司科学研究与技术开发课题“中深层页岩气井高效能水基钻井液技术研究”(CPET202308)。
详细信息
    作者简介:

    袁玥辉,硕士,毕业于日本北海道大学综合化学专业,目前从事水基钻井液、防漏堵漏技术工作或研究。电话 (010)80162062;E-mail:yuanyhdr@cnpc. com. cn

  • 中图分类号: TE254.4

Remove Detrimental Solids from Recycled Old Drilling Fluids Using Oil-Based Drilling Fluid Flocculants

  • 摘要: 针对完钻回收油基钻井液老浆中有害固相含量高导致钻井液性能恶化的关键问题,提出絮凝去除有害固相的技术思路,表征了油基钻井液絮凝剂XN-1对有害固相的絮凝性能,探究了絮凝剂XN-1的絮凝作用机理,评价了絮凝结合筛分、离心在去除老浆中有害固相及优化其流变性能的效果。室内研究与现场试验表明,絮凝剂XN-1在油基钻井液老浆中絮凝效果良好,絮凝前后絮体尺寸由亚微米提高至60 μm;老浆经絮凝、筛分处理后,有害固相去除率为20%左右。老浆经絮凝、离心处理,有害固相去除率可达70.50%,处理后老浆再次配浆,流变性能显著优化。絮凝剂XN-1的使用,有效改善了油基钻井液老浆重复使用效果,实现了油基钻井液老浆的有效回收利用并大幅降低待处置危废量,解决了油基钻井液有害固相难以去除的难题。

     

  • 图  1  添加不同量絮凝剂悬浮液沉降情况

    注: XN-1加量从左向右依次为0、0.1%、0.3%、0.5%、0.7%、0.9%。

    图  2  未添加XN-1(左)与添加0.3%XN-1(右)的岩屑絮凝情况

    图  3  不同絮凝剂加量下岩屑光学显微镜照片和絮凝剂加量为0.3%时电子显微镜图像

    图  4  岩屑经絮凝剂吸附前后的红外光谱图

    图  5  絮凝剂XN-1絮凝的机理示意图

    图  6  添加不同量絮凝剂老浆筛分后固相含量(a)与密度(b)

    图  7  油基钻井液絮凝前后过孔径200目筛截留颗粒

    图  8  老浆、未絮凝配浆与絮凝配浆流变性能

    图  9  老浆、未絮凝离心配浆与絮凝离心配浆流变性能对比

    图  10  絮凝后老浆在振动筛处筛分处理

    图  11  老浆絮凝筛分前后流变性能对比

    图  12  老浆絮凝离心前后流变性能对比

    表  1  不同絮凝筛分条件下老浆性能

    筛网
    目数
    搅拌速率/
    r/min
    t搅拌/
    min
    T/
    LGS/
    %
    ρ/
    g/cm3
    50 100 10 20 13.07 1.98
    100 100 10 20 11.03 1.96
    150 100 10 20 10.52 1.95
    200 100 10 20 10.24 1.95
    200 50 10 20 11.27 1.96
    200 150 10 20 10.57 1.95
    200 200 10 20 10.42 1.95
    200 100 5 20 10.68 1.95
    200 100 15 20 10.34 1.96
    200 100 10 40 10.57 1.95
    200 100 10 60 10.44 1.95
    200 100 10 80 10.35 1.95
    下载: 导出CSV

    表  2  不同絮凝离心条件下老浆性能

    离心转速/(
    r·min−1
    t离心/
    min
    T/
    LGS/
    %
    ρ/(
    g·cm−3
    13005.02010.641.67
    33005.0207.221.39
    53005.0204.121.21
    73005.0204.401.12
    53002.5209.831.43
    53007.5204.521.15
    530010.0204.411.08
    53005.0403.951.18
    53005.0604.011.17
    53005.0804.101.18
    下载: 导出CSV

    表  3  絮凝筛分前后老浆密度与固相含量

    类别 ρ/(g·cm−3 LGS/% 总固相/%
    原始老浆 1.39 12.70 26.20
    直接过筛 1.39 12.50 26.30
    絮凝过筛 1.37 8.40 21.50
    下载: 导出CSV

    表  4  絮凝离心前后老浆密度与固相含量

    类别 ρ/(g·cm−3 LGS/% 总固相/%
    原始老浆 2.21 13.90 51.00
    未加絮凝剂离心液 1.32 8.90 24.70
    絮凝后离心液 1.25 4.10 20.20
    下载: 导出CSV
  • [1] 王中华. 国内外油基钻井液研究与应用进展[J]. 断块油气田, 2011, 18(4): 533-537.

    WANG Zhonghua. Research and application progress of oil-based drilling fluid at home and abroad[J]. Fault-Block Oil and Gas Field, 2011, 18(4): 533-537.
    [2] 高文龙. 致密油水平井用高效封堵油基钻井液体系的研制与应用[J]. 精细石油化工进展, 2024, 25(1): 1-4.

    GAO Wenlong. Development and application of high efficient plugging oil-base drilling fluid system for tight oil horizontal wells[J]. Advances in Fine Petrochemicals, 2024, 25(1): 1-4.
    [3] LI Q H, LI S X. Ultra-high density oil-based drilling fluids and its applications in ultra-deep petroleum systems[C]//Paper presented at the SPE Latin American and Caribbean Petroleum Engineering Conference. Virtual, 2020: SPE-198937-MS.
    [4] 杨振周, 刘付臣, 周春, 等. 抗超高温高密度油基钻井液用新型降黏剂的性能[J]. 钻井液与完井液, 2018, 35(2): 35-39.

    YANG Zhenzhou, LIU Fuchen, ZHOU Chun, et al. Study on the performance of new ultra-high temperature high density oil base mud thinners[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 35-39.
    [5] 吴嘉蕾, 佟拉嘎, 李红英, 等. 改性聚丙烯酰胺絮凝废弃油基钻井液中有害固相的研究[J]. 现代化工, 2023, 43(2): 203-208.

    WU Jialei, TONG Laga, LI Hongying, et al. Study on modified polyacrylamide to flocculate harmful solid phase in spent oil-based drilling fluid[J]. Modern chemical industry, 2023, 43(2): 203-208.
    [6] 王星媛, 欧翔, 明显森. 威202H3平台废弃油基钻井液处理技术[J]. 钻井液与完井液, 2017, 34(2): 64-69. doi: 10.3969/j.issn.1001-5620.2017.02.011

    WANG Xingyuan, OU Xiang, MING Xiansen. Disposing waste oil base drilling fluid from the Wei 202H3 platform[J]. Drilling Fluid & Completion Fluid, 2017, 34(2): 64-69. doi: 10.3969/j.issn.1001-5620.2017.02.011
    [7] 吕开河, 杜宏艳, 孙金声, 等. 含油钻屑处理技术研究进展与展望[J]. 中国石油大学学报(自然科学版), 2023, 47(3): 78-86.

    LYU Kaihe, DU Hongyan, SUN Jinsheng, et al. Research and development of oily drilling cuttings treatment technologies[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3): 78-86.
    [8] 刘宇程, 徐俊忠, 袁建梅, 等. 废弃油基钻井液热化学破乳-离心分离实验[J]. 环境工程学报, 2013, 7(6): 2333-2339.

    LIU Yucheng, XU Junzhong, YUAN Jianmei, et al. Experiment on thermo-chemical demulsification and centrifugal separation of abandoned oil-based drilling fluid[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2333-2339.
    [9] 邵国彪, 武宁宁, 王凯, 等. 废弃油基钻井液国内外处置技术研究[J]. 中国石油和化工标准与质量, 2021, 41(22): 191-192. doi: 10.3969/j.issn.1673-4076.2021.22.091

    SHAO Guobiao, WU Ningning, WANG Kai, et al. Research on disposal technology of waste oil-based drilling fluid at home and abroad[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(22): 191-192. doi: 10.3969/j.issn.1673-4076.2021.22.091
    [10] 郭继香, 崔永杰, 曾倩倩, 等. 复合絮凝剂PAC-CPAM的制备及其处理钻井废水研究[J]. 应用化工, 2011, 40(5): 775-778,781.

    GUO Jixiang, CUI Yongjie, ZENG Qianqian, et al. Preparation of composite flocculant PAC-CPAM and its application in drilling wastewater treatment[J]. Applied Chemical Industry, 2011, 40(5): 775-778,781.
    [11] 任龙芳, 赵国徽, 强涛涛, 等. 阳离子胶原蛋白共聚物絮凝剂在废弃钻井液中的应用研究[J]. 精细石油化工, 2013, 30(1): 27-31. doi: 10.3969/j.issn.1003-9384.2013.01.008

    REN Longfang, ZHAO Guohui, QIANG Taotao, et al. Study on the application of cationic collagen copolymer in waste drilling fluid[J]. Speciality Petrochemicals, 2013, 30(1): 27-31. doi: 10.3969/j.issn.1003-9384.2013.01.008
    [12] 李广环, 吴文茹, 黄达全, 等. 废弃水基钻井液用新型破胶絮凝剂的研制与应用[J]. 钻井液与完井液, 2015, 32(5): 46-48,53.

    LI Guanghuan, WU Wenru, HUANG Daquan, et al. Development and application of new breaking flocculant for waste water-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(5): 46-48,53.
    [13] 彭双磊. 水基钻井液有机处理剂环境影响机理与微固相清除技术的研究[D]. 北京: 中国石油大学(北京), 2019.

    PENG Shuanglei. Study on environmental impact mechanism of organic additives and microsolids removal technology for water-based drilling fluids[D]. Beijing: China University of Petroleum(Beijing), 2019.
    [14] 刘洪斌. 钻井液离心机工作理论研究[D]. 成都: 西南石油大学, 2006.

    LIU Hongbin. Study on performance theory of drilling fluid centrifuge[D]. Chengdu: Southwest Petroleum University, 2006.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  78
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-19
  • 修回日期:  2025-06-02
  • 刊出日期:  2025-09-30

目录

    /

    返回文章
    返回