留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗220℃淀粉基复合降滤失剂的研制与性能评价

赵杰 张羽臣 刘占奇 陈西国 王宝军 李新亮

赵杰,张羽臣,刘占奇,等. 抗220℃淀粉基复合降滤失剂的研制与性能评价[J]. 钻井液与完井液,2025,42(5):617-622 doi: 10.12358/j.issn.1001-5620.2025.05.007
引用本文: 赵杰,张羽臣,刘占奇,等. 抗220℃淀粉基复合降滤失剂的研制与性能评价[J]. 钻井液与完井液,2025,42(5):617-622 doi: 10.12358/j.issn.1001-5620.2025.05.007
ZHAO Jie, ZHANG Yuchen, LIU Zhanqi, et al.Development and performance evaluation of a starch-based composite filter loss reducer for use at 220℃[J]. Drilling Fluid & Completion Fluid,2025, 42(5):617-622 doi: 10.12358/j.issn.1001-5620.2025.05.007
Citation: ZHAO Jie, ZHANG Yuchen, LIU Zhanqi, et al.Development and performance evaluation of a starch-based composite filter loss reducer for use at 220℃[J]. Drilling Fluid & Completion Fluid,2025, 42(5):617-622 doi: 10.12358/j.issn.1001-5620.2025.05.007

抗220℃淀粉基复合降滤失剂的研制与性能评价

doi: 10.12358/j.issn.1001-5620.2025.05.007
基金项目: 中海石油(中国)有限公司科技项目“渤海油田稳产3000万吨,上产4000万吨关键技术研究”子课题“莱州湾浅层6000米大位移井钻完井技术研究与示范(CNOOC-KJ135ZDXM36TJ06TJGD 202201)”部分研究成果。
详细信息
    作者简介:

    赵杰,高级工程师,1985年生,2012年毕业于东北石油大学,现在从事海洋石油钻完井技术研究工作

    通讯作者:

    李新亮,副教授,1992年生,2021年毕业于中国石油大学(北京),现在主要从事油田化学领域的教学与研究工作。E-mail:petroleumliang@126.com。

  • 中图分类号: TE254.4

Development and Performance Evaluation of a Starch-Based Composite Filter Loss Reducer for Use at 220℃

  • 摘要: 钻井液处理剂兼具抗高温与环保性能是确保“安全、高效、经济、绿色”钻井的关键。以水溶淀粉、细目核桃壳粉和环保丙烯酸树脂为原料,利用交联剂,通过反相乳液聚合方法制备了一种抗高温环保型淀粉基复合降滤失剂。该复合降滤失剂的最大热分解温度为286℃,呈现出一种具有不规则形状与不同尺寸的纤维状结构。220℃热滚后,2%复合降滤失剂可使4%膨润土基浆的中压滤失量由39 mL下降至12 mL,并使得基浆高温高压滤失量由172 mL降低至52 mL,降滤失率近70%,且高温下具有低黏降滤失效果。进一步通过Zeta电位分析、粒径分布测量和扫描电镜观察探究了该复合降滤失剂的作用机理。结果表明,该复合降滤失剂吸附在黏土颗粒上,增强了膨润土基浆的胶体稳定性,优化了其粒度级配;同时,复合降滤失剂能够封堵滤饼孔隙,形成薄而韧的滤饼,最终显著降低钻井液在高温下的滤失量,可为抗超高温环保型水基钻井液体系研发提供指导。

     

  • 图  1  复合降滤失剂的反应流程图

    图  2  淀粉基复合降滤失剂和水溶淀粉的红外光图谱和热重曲线

    图  3  复合降滤失剂分散液的外观和光学显微图

    图  4  220℃老化16 h前后复合降滤失剂加量对基浆性能的影响

    图  5  220℃老化后含不同浓度复合降滤失剂基浆的粒径分布

    图  6  在基浆中加入2%复合降滤失剂前后的滤饼SEM图

    表  1  220℃老化后含不同浓度复合降滤失剂基浆的粒径分布

    降滤失剂 /% D0.1/μm D0.5/μm D0.9/μm 平均粒径/μm
    0 0.624 3.584 11.119 29.226
    0.5 0.605 3.511 11.848 30.446
    1.0 0.861 3.901 15.603 117.690
    2.0 0.593 3.028 12.069 85.325
    下载: 导出CSV
  • [1] 刘锋报, 孙金声, 王建华. 国内外深井超深井钻井液技术现状及发展趋势[J]. 新疆石油天然气, 2023, 19(2): 34-39. doi: 10.12388/j.issn.1673-2677.2023.02.004

    LIU Fengbao, SUN Jinsheng, WANG Jianhua. A global review of technical status and development trend of drilling fluids for deep and ultra-deep wells[J]. Xinjiang Oil & Gas, 2023, 19(2): 34-39. doi: 10.12388/j.issn.1673-2677.2023.02.004
    [2] 李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57.

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57.
    [3] 汪海阁, 黄洪春, 毕文欣, 等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业, 2021, 41(8): 163-177.

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163-177.
    [4] 艾加伟, 向兴华, 陈俊斌, 等. 环保水基钻井液处理剂研究进展[J]. 精细石油化工, 2023, 40(2): 67-70.

    AI Jiawei, XIANG Xinghua, CHEN Junbin, et al. Research progress of environmental friendly water-based drilling fluid treatment agents[J]. Speciality Petrochemicals, 2023, 40(2): 67-70.
    [5] WANG G S, JIANG G C, YANG J, et al. Novel N, N-dimethylacrylamide copolymer containing multiple rigid comonomers as a filtrate reducer in water-based drilling fluids and mechanism study[J]. Journal of Applied Polymer Science, 2021, 138(39): 51001. doi: 10.1002/app.51001
    [6] AGHDAM S B, MOSLEMIZADEH A, KOWSARI E, et al. Synthesis and performance evaluation of a novel polymeric fluid loss controller in water-based drilling fluids: high-temperature and high-salinity conditions[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103576. doi: 10.1016/j.jngse.2020.103576
    [7] LUO Y H, LIN L, LUO P Y, et al. Polymer-laponite composites as filtrate reducer for high temperature and salt resistant drilling fluid: characterization and performance evaluation[J]. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2024, 688: 133679. doi: 10.1016/j.colsurfa.2024.133679
    [8] 罗明望, 张现斌, 王中秋, 等. 超高温低黏聚合物降滤失剂的研制及作用机理[J]. 钻井液与完井液, 2020, 37(5): 585-592.

    LUO Mingwang, ZHANG Xianbin, WANG Zhongqiu, et al. Preparation and working mechanisms of an ultra-high temperature low viscosity polymer filtrate reducer[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 585-592.
    [9] 杨丽丽, 杨潇, 蒋官澄, 等. 含离子液体链段抗高温高钙降滤失剂[J]. 钻井液与完井液, 2018,35(6): 8-14.

    YANG Lili, YANG Xiao, JIANG Guancheng, et al. A high temperature calcium resistant filter loss reducer containing ionic liquid segments[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 8-14.
    [10] 邢林庄, 袁玥辉, 叶成, 等. 抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能[J]. 钻井液与完井液, 2023, 40(6): 703-710.

    XING Linzhuang, YUAN Yuehui, YE Cheng, et al. Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 703-710.
    [11] 张勇, 王彪, 刘晓栋. 国内钻井液用磺化酚醛树脂研究进展[J]. 油田化学, 2016, 33(3): 547-551.

    ZHANG Yong, WANG Biao, LIU Xiaodong. Domestic research progress of sulfonated phenolic resin for drilling fluid[J]. Oilfield Chemistry, 2016, 33(3): 547-551.
    [12] 刘自广, 宋丰博, 尤志良, 等. 基于改性植物多酚的高温高密度环保型水基钻井液[J]. 钻井液与完井液, 2021, 38(3): 285-291.

    LIU Ziguang, SONG Fengbo, YOU Zhiliang, et al. A high-temperature and high-density environmentally-friendly water-based drilling fluids based on modifed plant polyphenols[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 285-291.
    [13] ZHANG H H, LI X L, SHAO Y H, et al. Application of starch microspheres modified by alkyl polyglucoside as environmental-friendly fluid loss additive in water-based drilling fluids[J]. Energy & Fuels, 2024, 38(11): 10381-10389.
    [14] 高鑫, 钟汉毅, 邱正松, 等. 钻井液用β-环糊精聚合物微球降滤失剂的制备[J]. 钻井液与完井液, 2021, 38(1): 21-26.

    GAO Xin, ZHONG Hanyi, QIU Zhengsong, et al. Preparation of microsphere β-cyclodextrin polymer filter loss reducer for drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 21-26.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  61
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-21
  • 修回日期:  2025-05-30
  • 刊出日期:  2025-09-30

目录

    /

    返回文章
    返回