留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热塑性温敏黏连树脂堵漏剂制备及其黏结作用机理

雷少飞 肖超 宋碧涛 杨顺辉 何青水 于玲玲

雷少飞,肖超,宋碧涛,等. 热塑性温敏黏连树脂堵漏剂制备及其黏结作用机理[J]. 钻井液与完井液,2025,42(5):609-616 doi: 10.12358/j.issn.1001-5620.2025.05.006
引用本文: 雷少飞,肖超,宋碧涛,等. 热塑性温敏黏连树脂堵漏剂制备及其黏结作用机理[J]. 钻井液与完井液,2025,42(5):609-616 doi: 10.12358/j.issn.1001-5620.2025.05.006
LEI Shaofei, XIAO Chao, SONG Bitao, et al.Thermoplastic thermosensitive adhesive resin lost circulation material (LCM) and its adhension plugging mechanism[J]. Drilling Fluid & Completion Fluid,2025, 42(5):609-616 doi: 10.12358/j.issn.1001-5620.2025.05.006
Citation: LEI Shaofei, XIAO Chao, SONG Bitao, et al.Thermoplastic thermosensitive adhesive resin lost circulation material (LCM) and its adhension plugging mechanism[J]. Drilling Fluid & Completion Fluid,2025, 42(5):609-616 doi: 10.12358/j.issn.1001-5620.2025.05.006

热塑性温敏黏连树脂堵漏剂制备及其黏结作用机理

doi: 10.12358/j.issn.1001-5620.2025.05.006
基金项目: 中石化科技部“环境响应自适应防塌钻井液体系研究”(P24236)。
详细信息
    作者简介:

    雷少飞,博士,现在主要从事钻井液、防漏堵漏理论与技术研究工作。电话(010)56606245;E-mail:leishf8484.sripe@sinopec.com。

  • 中图分类号: TE282

Thermoplastic thermosensitive adhesive resin lost circulation material (LCM) and its adhension plugging mechanism

  • 摘要: 针对常规桥接材料颗粒间无黏结力相互作用,导致一次堵漏成功率较低、封堵层承压能力不足等问题,以丙烯腈-苯乙烯-丁二烯共聚物为基体树脂,通过马来酸酐、石油树脂等共混改性,研发了一种热塑性温敏黏连树脂堵漏剂,采用红外、热重、DMA、高温高压堵漏仪等对热塑性温敏黏连树脂堵漏剂性能进行了性能表征,分析了热塑性树脂黏结封堵机理。结果表明:该堵漏剂在高温下具有较好的黏结堵漏性能,在180℃下,承压能力高达8.2 MPa;温敏黏连树脂堵漏剂在常温为颗粒状,达到激活温度后为半熔融固体颗粒,可自适应进入裂缝后,通过分子链段扩散和纠缠等作用自黏封堵,实现温敏、自适应和高效封堵功能。在高温下,热塑性树脂温敏黏连树脂堵漏剂可提高一次堵漏成功率和承压堵漏能力,为解决钻井过程中的井漏难题提供了新的理论和技术途径。

     

  • 图  1  热塑性温敏黏连树脂的红外光谱图

    图  2  热塑性温敏黏连树脂热重分析

    图  3  温敏黏连树脂力学性能随温度的变化

    图  4  热塑性温敏黏连树脂力黏度随温度和剪切频率的变化规律

    图  5  热塑性聚合物链段扩散黏结机理

    图  6  树脂黏结时间随温度的变化

    图  7  不同堵漏材料封堵层形成过程

    图  8  改性前后热塑性温敏黏连树脂的承压能力

    图  9  辉绿岩取心照片

  • [1] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发, 2021, 48(3): 630-638. doi: 10.11698/PED.2021.03.18

    SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3): 630-638. doi: 10.11698/PED.2021.03.18
    [2] 许成元, 闫霄鹏, 康毅力, 等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发, 2020, 47(2): 399-408. doi: 10.11698/PED.2020.02.19

    XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deed naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399-408. doi: 10.11698/PED.2020.02.19
    [3] 孙金声, 雷少飞, 白英睿, 等. 智能材料在钻井液堵漏领域研究进展和应用展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 100-110.

    SUN Jinsheng, LEI Shaofei, BAI Yingrui, et al. Research progress and application prospects of smart materials in lost circulation control of drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4): 100-110.
    [4] 孙金声, 雷少飞, 白英睿, 等. 高分子材料的力学状态转变机理及在钻井液领域的应用展望[J]. 石油学报, 2021, 42(10): 1382-1394. doi: 10.7623/syxb202110012

    SUN Jinsheng, LEI Shaofei, BAI Yingrui, et al. Mechanical transformation mechanism of polymer materials and its application prospects in the field of drilling fluids[J]. Acta Petrolei Sinica, 2021, 42(10): 1382-1394. doi: 10.7623/syxb202110012
    [5] 游利军, 邹俊, 康毅力, 等. 裂缝性致密变质岩气藏钻井液漏失损害机理[J]. 钻井液与完井液, 2024, 41(6): 719-727.

    YOU Lijun, ZOU Jun, KANG Yili, et al. Mechanisms of formation damage by lost drilling fluids in fractured tight metamorphic rock gas reservoirs[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 719-727
    [6] 蒲磊, 谢凌志, 徐鹏, 等. 漏失裂缝内封堵层演化规律及颗粒特征行为的可视化实验研究[J]. 钻井液与完井液, 2025, 42(1): 41-50. doi: 10.12358/j.issn.1001-5620.2025.01.004

    PU Lei, XIE Lingzhi, XU Peng, et al. Visual experimental study on evolution and particle’s characteristic behavior of plugging layers inside fractured loss zones[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 41-50 doi: 10.12358/j.issn.1001-5620.2025.01.004
    [7] PANDEY A, TODA A, RASTOGI S. Influence of amorphous component on melting of semicrystalline polymers[J]. Macromolecules, 2011, 44(20): 8042-8055. doi: 10.1021/ma201797k
    [8] SZTUCKI M, NARAYANAN T, BELINA G, et al. Kinetic arrest and glass-glass transition in short-ranged attractive colloids[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2006, 74(5 Pt 1): 051504.
    [9] HE Y, GOU S H, ZHOU Y T, et al. Thermoresponsive behaviors of novel polyoxyethylene-functionalized acrylamide copolymers: Water solubility, rheological properties and surface activity[J]. Journal of Molecular Liquids, 2020, 319: 114337. doi: 10.1016/j.molliq.2020.114337
    [10] BROOKS N W J, MUKHTAR M. Temperature and stem length dependence of the yield stress of polyethylene[J]. Polymer, 2000, 41(4): 1475-1480. doi: 10.1016/S0032-3861(99)00362-6
    [11] OLEINIK E F. Plasticity of semicrystalline flexible-chain polymers at the microscopic and mesoscopic levels[J]. Polymer Science Series C, 2003, 45: 17-117.
    [12] HUMBERT S, LAME O, VIGIER G. Polyethylene yielding behaviour: What is behind the correlation between yield stress and crystallinity[J]. Polymer, 2009, 50(15): 3755-3761. doi: 10.1016/j.polymer.2009.05.017
    [13] PAK J, PYDA M, WUNDERLICH B. Rigid amorphous fractions and glass transitions in poly(oxy-2, 6-dimethyl-1, 4-phenylene)[J]. Macromolecules, 2003, 36(2): 495-499. doi: 10.1021/ma021487u
    [14] CANGIALOSI D, ALEGRÍA A, COLMENERO J. Relationship between dynamics and thermodynamics in glass-forming polymers[J]. Europhysics Letters, 2005, 70(5): 614-620. doi: 10.1209/epl/i2005-10029-y
    [15] MANIAS E, KUPPA V, YANG D K, et al. Relaxation of polymers in 2 nm slit-pores: confinement induced segmental dynamics and suppression of the glass transition[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2001, 187–188: 509-521.
    [16] de GENNES P G. Reptation of a polymer chain in the presence of fixed obstacles[J]. Journal of Chemical Physics, 1971, 55(2): 572-579. doi: 10.1063/1.1675789
    [17] WATANABE H. Viscoelasticity and dynamics of entangled polymers[J]. Progress in Polymer Science, 1999, 24(9): 1253-1403. doi: 10.1016/S0079-6700(99)00029-5
    [18] YANG F, PITCHUMANI R. Healing of thermoplastic polymers at an interface under nonisothermal conditions[J]. Macromolecules, 2002, 35(8): 3213-3224. doi: 10.1021/ma010858o
    [19] HARTMANN M, PALZER S. Caking of amorphous powders — Material aspects, modelling and applications[J]. Powder Technology, 2011, 206(1/2): 112-121.
    [20] ARGENTO C, JAGOTA A, CARTER W C. Surface formulation for molecular interactions of macroscopic bodies[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(7): 1161-1183. doi: 10.1016/S0022-5096(96)00121-4
    [21] JAGOTA A, ARGENTO C, MAZUR S. Growth of adhesive contacts for Maxwell viscoelastic spheres[J]. Journal of Applied Physics, 1998, 83(1): 250-259. doi: 10.1063/1.366679
    [22] LIN Y Y, HUI C Y, JAGOTA A. The role of viscoelastic adhesive contact in the sintering of polymeric particles[J]. Journal of Colloid and Interface Science, 2001, 237(2): 267-282. doi: 10.1006/jcis.2001.7470
    [23] de GENNES P G. Entangled polymers[J]. Physics Today, 1983, 36(6): 33-39. doi: 10.1063/1.2915700
    [24] PRAGER S, TIRRELL M. The healing process at polymer–polymer interfaces[J]. Journal of Chemical Physics, 1981, 75(10): 5194-5198. doi: 10.1063/1.441871
    [25] AOKI* Y, TANAKA T K H. Viscoelastic properties of miscible poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends in the molten state[J]. Macromolecules, 1999, 32(25): 8560-8565. doi: 10.1021/ma990281z
    [26] WILLIAMS M L, LANDEL R F, FERRY J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707. doi: 10.1021/ja01619a008
    [27] HANCOCK B C, ZOGRAFI G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids[J]. Pharmaceutical Research, 1994, 11(4): 471-477. doi: 10.1023/A:1018941810744
    [28] KELLEY F N, BUECHE F. Viscosity and glass temperature relations for polymer-diluent systems[J]. Journal of Polymer Science Part A - Polymer Chemistry, 2010, 50(154): 549-556.
    [29] WOOL R P, YUAN B L, MCGAREL O J, et al. Welding of polymer interfaces[J]. Polymer Engineering and Science, 1990, 30(22): 1454-1464. doi: 10.1002/pen.760302206
  • 加载中
图(9)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  68
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-06
  • 修回日期:  2025-05-12
  • 刊出日期:  2025-09-30

目录

    /

    返回文章
    返回