留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准噶尔盆地南缘地区泥岩段多场耦合井壁失稳机理

高世峰 屈沅治 都伟超 任晗 庄严 黄宏军

高世峰,屈沅治,都伟超,等. 准噶尔盆地南缘地区泥岩段多场耦合井壁失稳机理[J]. 钻井液与完井液,2025,42(5):600-608 doi: 10.12358/j.issn.1001-5620.2025.05.005
引用本文: 高世峰,屈沅治,都伟超,等. 准噶尔盆地南缘地区泥岩段多场耦合井壁失稳机理[J]. 钻井液与完井液,2025,42(5):600-608 doi: 10.12358/j.issn.1001-5620.2025.05.005
GAO Shifeng, QU Yuanzhi, DU Weichao, et al.Mechanism of multi-field coupled wellbore instability in the mudstone section of the southern margin of the Junggar basin[J]. Drilling Fluid & Completion Fluid,2025, 42(5):600-608 doi: 10.12358/j.issn.1001-5620.2025.05.005
Citation: GAO Shifeng, QU Yuanzhi, DU Weichao, et al.Mechanism of multi-field coupled wellbore instability in the mudstone section of the southern margin of the Junggar basin[J]. Drilling Fluid & Completion Fluid,2025, 42(5):600-608 doi: 10.12358/j.issn.1001-5620.2025.05.005

准噶尔盆地南缘地区泥岩段多场耦合井壁失稳机理

doi: 10.12358/j.issn.1001-5620.2025.05.005
详细信息
    作者简介:

    高世峰,1989年生,高级工程师,博士,毕业于中国石油大学(北京)化学工程与技术专业,现在主要从事钻井液基础理论、处理剂研发等相关技术工作。电话 (010)80162064;E-mail:gaoshifeng163@163.com

  • 中图分类号: TE21

Mechanism of Multi-field Coupled Wellbore Instability in the Mudstone Section of the Southern Margin of the Junggar Basin

  • 摘要: 为揭示准噶尔盆地南缘易垮塌层位井壁失稳机理,以目的层泥岩作为研究对象,通过理化实验、力学实验以及构建动态损伤模型,揭示准噶尔盆地南缘泥岩段多场耦合作用的井壁失稳机理。研究结果表明:南缘地区泥岩膨胀性黏土矿物含量高达42%,水化膨胀率30%以上,滚动回收率低于20%,表现出较强的水化特征;原岩强度低于40 MPa,水化后原岩强度、弹性模量呈指数下降,下降速度先快后慢;随着温度的升高,地层强度表现出下降的趋势,下降速度逐渐加快,这是因为热胀冷缩,孔隙内的空气膨胀,导致岩石内部应力发生变化,降低了强度。构建多场耦合动态井壁稳定模型,计算不同井斜角、方位角,不同作用时间的的坍塌压力当量密度,计算结果更加精确,揭示了准噶尔盆地南缘地区泥岩段多场耦合井壁失稳机理,为维持钻井过程井壁稳定和钻井设计提供理论指导。

     

  • 图  1  南缘地区矿物组成

    图  2  南缘地区黏土矿物组成

    图  3  南缘地层岩样吸水率实验结果

    图  4  泥岩耐崩解系数结果

    图  5  安集海河组的水化崩解结果

    图  6  紫泥泉子组页岩热滚前后的滚动回收率照片

    图  7  南缘地区页岩的滚动回收率实验结果

    图  8  紫泥泉子组页岩线性膨胀实验前后的照片

    图  9  南缘地区3个层位的线性膨胀率实验结果

    图  10  南缘地区3个层位的原岩强度特征

    图  11  不同温度下安集海河组岩心的强度特征

    图  12  内聚力随温度损伤模型

    图  13  内摩擦角随温度损伤模型

    图  14  安集海河组岩心不同水化时间的强度特征

    图  15  内聚力随水化时间损伤模型

    图  16  内摩擦角随水化时间损伤模型

    图  17  温度影响结果

    图  18  水化时间影响结果

    图  19  多场耦合因素影响结果

  • [1] 庞志超, 冀冬生, 刘敏, 等. 准噶尔盆地南缘冲断带侏罗系-白垩系油气成藏条件及勘探潜力[J]. 石油学报, 2023, 44(8): 1258-1273.

    PANG Zhichao, JI Dongsheng, LIU Min, et al. Jurassic-cretaceous oil-gas accumulation conditions and exploration potential in the thrust belt at the southern margin of Junggar basin[J]. Acta Petrolei Sinica, 2023, 44(8): 1258-1273.
    [2] 周彦希, 关旭同, 周天琪, 等. 准噶尔盆地南缘上侏罗统-下白垩统地层不整合成因和构造演化意义——齐古断褶带剖面的启示[J]. 科学技术与工程, 2021, 21(19): 7916-7923.

    ZHOU Yanxi, GUAN Xutong, ZHOU Tianqi, et al. Origins of the upper jurassic-lower cretaceous unconformity and its tectonic significance in the southern margin of the Junggar basin: insights from outcrops of the Qigu fold belt[J]. Science Technology and Engineering, 2021, 21(19): 7916-7923.
    [3] 高剑雄. 准噶尔盆地南缘西段下二叠统地层发育特征研究[J]. 地质论评, 2023, 69(S01): 47-49.

    GAO Jianxiong. Stratigraphic characteristics of the lower Permian series in the western part of the southern Junggar basin[J]. Geological Review, 2023, 69(S01): 47-49.
    [4] 郭文建, 李天然, 冀冬生, 等. 准噶尔盆地南缘中段第一、二排构造演化与油气成藏[J]. 地质与资源, 2023, 32(5): 555-565,623.

    GUO Wenjian, LI Tianran, JI Dongsheng, et al. Tectonic evolution and hydrocarbon accumulation of the first and second rows of structure in the central part of southern Junggar basin[J]. Geology and Resources, 2023, 32(5): 555-565,623.
    [5] 徐生江, 刘颖彪, 戎克生, 等. 准噶尔南缘膏泥岩地层井壁失稳机理[J]. 科学技术与工程, 2017, 17(28): 194-199. doi: 10.3969/j.issn.1671-1815.2017.28.034

    XU Shengjiang, LIU Yingbiao, RONG Kesheng, et al. Borehole instability mechanism of plaster mudstone formation in southern margin of Junggar basin[J]. Science Technology and Engineering, 2017, 17(28): 194-199. doi: 10.3969/j.issn.1671-1815.2017.28.034
    [6] 鲁铁梅, 叶成, 鲁雪梅, 等. 准噶尔盆地南缘高温有机质储层井壁失稳机理及对策[J]. 新疆石油天然气, 2022, 18(1): 26-31.

    LU Tiemei, YE Cheng, LU Xuemei, et al. Wellbore instability mechanism and countermeasures of high-temperature organic-matter-rich reservoirs in the southern margin of Junggar basin[J]. Xinjiang Oil & Gas, 2022, 18(1): 26-31.
    [7] 孙金声, 李锐, 王韧, 等. 准噶尔盆地南缘井壁失稳机理及对策研究[J]. 西南石油大学学报(自然科学版), 2022, 44(1): 1-12.

    SUN Jinsheng, LI Rui, WANG Ren, et al. Research on the mechanism and countermeasures of shaft instability in the southern margin of Junggar basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(1): 1-12.
    [8] 刘均一, 柴金鹏, 李光泉, 等. 准噶尔盆地硬脆性页岩强化致密封堵水基钻井液技术[J]. 石油钻探技术, 2022, 50(5): 50-56.

    LIU Junyi, CHAI Jinpeng, LI Guangquan, et al. Enhanced tight plugging water-based drilling fluid technology for hard and brittle shales in Junggar basin[J]. Petroleum Drilling Techniques, 2022, 50(5): 50-56.
    [9] 赵洪山, 冯光通, 唐波, 等. 准噶尔盆地火成岩钻井提速难点与技术对策[J]. 石油机械, 2013, 41(3): 21-26. doi: 10.3969/j.issn.1001-4578.2013.03.005

    ZHAO Hongshan, FENG Guangtong, TANG Bo, et al. Difficulties in igneous rock drilling in Dzungaria basin and technological solutions[J]. China Petroleum Machinery, 2013, 41(3): 21-26. doi: 10.3969/j.issn.1001-4578.2013.03.005
    [10] 杨虎, 陈昊, 李宜霖, 等. 钻井井壁力学失稳评价的强度准则优选与应用[J]. 新疆石油天然气, 2022, 18(3): 1-5. doi: 10.12388/j.issn.1673-2677.2022.03.001

    YANG Hu, CHEN Hao, LI Yilin, et al. Optimization and application of strength criterion for wellbore mechanical instability evaluation in drilling[J]. Xinjiang Oil & Gas, 2022, 18(3): 1-5. doi: 10.12388/j.issn.1673-2677.2022.03.001
    [11] 陈文可, 郑和, 龚厚平, 等. 中江区块沙溪庙组井壁失稳机理及烷基糖苷防塌钻井液[J]. 钻井液与完井液, 2023, 40(4): 438-445. doi: 10.12358/j.issn.1001-5620.2023.04.004

    CHEN Wenke, ZHENG He, GONG Houping, et al. Mechanisms of borehole instability of the Shaximiao formation in block Zhongjiang and the anti-collapse alkyl glycoside drilling fluid[J]. Drilling Fluid & Completion Fluid, 2023, 40(4): 438-445. doi: 10.12358/j.issn.1001-5620.2023.04.004
    [12] 王波, 吴金桥, 王孟玉, 等. 延安气田东部石千峰组-石盒子组井壁失稳机理及抑制方法[J]. 钻井液与完井液, 2024, 41(1): 76-83.

    WANG Bo, WU Jinqiao, WANG Mengyu, et al. Mechanisms and inhibition of borehole instability encountered in drilling the Shiqianfeng formation-Shihezi formation in the east of Yan'an gas field[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 76-83.
    [13] 张海山. 西湖凹陷上部杂色泥岩井壁失稳研究和钻井液优化[J]. 钻井液与完井液, 2024, 41(2): 205-214.

    ZHANG Haishan. Researching the borehole instability of upper variegated mudstone strata and optimizing drilling fluid in Xihu sag[J]. Drilling Fluid & Completion Fluid, 2024, 41(2): 205-214.
    [14] 卢运虎, 金衍, 夏阳, 等. 超深硬岩地层井壁失稳的动力学分析模型: 本征频率和高应力的影响[J]. 力学与实践, 2023, 45(5): 1033-1043.

    LU Yunhu, JIN Yan, XIA Yang, et al. Dynamic analysis model of wellbore instability in deep tight sandstone: effect of intrinsic frequency and high stress[J]. Mechanics in Engineering, 2023, 45(5): 1033-1043.
    [15] 金衍, 薄克浩, 张亚洲, 等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术, 2023, 51(4): 159-169.

    JIN Yan, BO Kehao, ZHANG Yazhou, et al. Progress and reflection on the coupling of mechanics and chemistry in the stability of deep hard and brittle shale well walls[J]. Petroleum Drilling Techniques, 2023, 51(4): 159-169.
    [16] 金军斌, 张杜杰, 李大奇, 等. 顺北油气田深部破碎性地层井壁失稳机理及对策研究[J]. 钻采工艺, 2023, 46(1): 42-49.

    JIN Junbin, ZHANG Dujie, LI Daqi, et al. Study on the wellbore instability mechanisms and drilling fluid countermeasures of deep fractured formation in Shunbei oil and gas field[J]. Drilling & Production Technology, 2023, 46(1): 42-49.
    [17] 叶成, 高世峰, 鲁铁梅, 等. 玛18井区水平井井壁失稳机理及强封堵钻井液技术研究[J]. 石油钻采工艺, 2023, 45(1): 38-46.

    YE Cheng, GAO Shifeng, LU Tiemei, et al. Well instability mechanism and strong plugging drilling fluid technology of horizontal well in Ma 18 well block[J]. Oil Drilling & Production Technology, 2023, 45(1): 38-46.
    [18] 丁乙, 梁利喜, 刘向君, 等. 温度和化学耦合作用对泥页岩地层井壁稳定性的影响[J]. 断块油气田, 2016, 23(5): 663-667.

    DING Yi, LIANG Lixi, LIU Xiangjun, et al. Influence of temperature and chemical on wellbore stability in clay shale formation[J]. Fault-Block Oil and Gas Field, 2016, 23(5): 663-667.
    [19] 魏纳, 裴俊, 李海涛, 等. 低温钻井液侵入对含天然气水合物沉积物力学性质影响研究[C]//第33届全国天然气学术年会. 南宁: 中国石油学会天然气专业委员会, 2023: 15-23.

    WEI Na, PEI Jun, LI Haitao, et al. Study on the influence of low temperature drilling fluid invasion on the mechanical properties of sediments containing natural gas hydrates[C]//The 33rd National Natural Gas Academic Annual Conference. Nanning: Natural Gas Professional Committee of China Petroleum Society, 2023: 15-23.
    [20] 幸雪松, 袁俊亮, 李忠慧, 等. 南海深水高温高压条件下地层破裂压力的确定[J]. 石油钻探技术, 2023, 51(6): 18-24.

    XING Xuesong, YUAN Junliang, LI Zhonghui, et al. Determination of formation fracture pressure under high temperature and high pressure in deep water of the South China sea[J]. Petroleum Drilling Techniques, 2023, 51(6): 18-24.
    [21] 王磊. 基于瞬态热流固耦合的钻井井壁稳定性分析[J]. 断块油气田, 2023, 30(2): 331-336.

    WANG Lei. Wellbore stability analysis in drilling process based on transient thermo-fluid-solid coupling model[J]. Fault-Block Oil and Gas Field, 2023, 30(2): 331-336.
    [22] 王晨, 姚直书, 刁奶毫, 等. 西部地区钻井井壁预制施工早期温度-应力场演化特征分析[J]. 煤矿安全, 2023, 54(4): 140-147.

    WANG Chen, YAO Zhishu, DIAO Naihao, et al. Evolution characteristics analysis of temperature-stress field in the early stage of borehole precast construction in western China[J]. Safety in Coal Mines, 2023, 54(4): 140-147.
    [23] 刘宇沛, 岳家平, 彭涛, 等. 基于多孔弹性模型及动态温度场的井壁稳定研究[J]. 天然气与石油, 2023, 41(2): 93-99.

    LIU Yupei, YUE Jiaping, PENG Tao, et al. Research on the wellbore stability based on the porous elastic model and the dynamic temperature field[J]. Natural Gas and Oil, 2023, 41(2): 93-99.
  • 加载中
图(19)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  46
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-10
  • 修回日期:  2025-05-17
  • 刊出日期:  2025-09-30

目录

    /

    返回文章
    返回