Drilling Fluid Technology for Test Well with Ultra-Long Horizontal Section in Shale Oil Block Gulong
-
摘要: 随着“大庆古龙陆相页岩油国家级示范区”建设逐渐深入,为评价水平段长与油气产量的相关性,计划实施超长水平段试验井,将水平段长由2000~2500 m增加至3000~3500 m。结合古龙页岩油区块地层特征,分析了超长水平段井壁稳定、降阻减摩和井眼清洁等钻井液施工难点,从钻井液密度确定、油水比例选择、封堵性能强化等方面,优化BH-OBM强封堵油基钻井液体系;采用“低黏高切”钻井液流变性能和激进钻井参数,保证井眼清洁和降低摩阻。试验井GY2-Q9-H47井施工顺利,Φ215.9 mm 裸眼井段电测平均井径扩大率为3.61%,井壁稳定性好;刷新区块完钻井深最深(5526 m)、水平段最长(3123 m)两项纪录。Abstract: With the development of the “Daqing Gulong Continental Shale Oil National Demonstration Zone”, wells with ultra-long horizontal sections are drilled to evaluate the correlation between the length of the horizontal section and the oil and gas production rate of a well. The length of the horizontal section is planned to be extended from the present 2000-2500 m to 3000-3500 m. Based on the formation characteristics of the Gulong shale oil block, drilling problems such as borehole wall stability, drag and friction reduction and borehole cleaning etc. that are probably encountered in drilling the ultra-long horizontal section wells were analyzed; the oil-based drilling fluid BH-OBM was optimized for those properties such as density, oil/water ratio and plugging performance, etc. During drilling, a “low viscosity high gel strength” rheology strategy and high drilling parameters were used to ensure hole cleaning and low friction and drag. The drilling operation of the test well GY2-Q9-H47 was successful: the average percent hole enlargement of the Φ215.9 mm was only 3.61% (based on wireline logging data), no borehole wall instability was encountered during drilling, and two new records in the shale gas oil block were set: the deepest well (5526 m) and the longest horizontal section (3123 m).
-
Key words:
- Gulong shale oil /
- Ultra-long horizontal section /
- Test well /
- Drilling fluid
-
表 1 试验井GY2-Q9-H47的井身结构
开钻次序 井眼尺寸/mm 井深/m 套管尺寸/mm 套管下深/m 一开 444.5 215 339.7 0~214 二开 311.2 1891 244.5 0~1890 三开 215.9 5526 139.7 0~5523 表 2 不同密度油基钻井液老化前后的性能
实验条件 ρ/(g·cm−3) PV/mPa·s YP/Pa φ6/φ3 Gel/(Pa/Pa) ES/V FLHTHP/mL 油水比 老化前 1.60 29 7.0 6.0/4.0 2.0/5.0 612 80∶20 150℃、16 h 1.60 27 8.0 6.0/5.0 3.0/5.5 634 2.4 80∶20 老化前 1.70 31 7.5 7.0/6.0 3.5/6.0 701 80∶20 150℃、16 h 1.70 30 8.5 6.0/5.0 3.5/6.0 724 2.8 80∶20 老化前 1.80 33 8.0 9.0/8.0 4.0/7.0 805 85∶15 150℃、16 h 1.80 31 9.0 9.5/8.0 5.0/7.5 846 2.6 85∶15 注:FLHTHP在150℃、3.5 MPa测定。 表 3 油基钻井液油水比例变化性能
油水比 实验条件 ρ/(g·cm−3) PV/mPa·s YP/Pa φ6/φ3 Gel/(Pa/Pa) ES/V FLHTHP/mL 80∶20 老化前 1.60 29 7.0 6/4 2.0/5.0 612 150℃、16 h 1.60 27 8.0 6/5 3.0/5.5 634 2.4 85∶15 老化前 1.60 27 6.0 5/4 2.0/4.5 858 150℃、16 h 1.60 26 7.0 6/5 2.5/5.0 842 2.2 80∶20 老化前 1.70 31 7.5 7/6 3.5/6.0 701 150℃、16 h 1.70 30 8.5 6/5 3.0/6.0 724 2.8 85∶15 老化前 1.70 29 7.0 6.5/5 3.5/7.0 820 150℃、16 h 1.70 28 8.0 5.5/4.5 3.0/6.0 871 2.4 注:FLHTHP在150℃×3.5 MPa下测定。 表 4 油基钻井液的PPA封堵性能(ρ=1.60 g/cm3)
陶瓷砂盘
孔径/μm不同时间的滤失量(150℃、3.5 MPa)/mL 1 min 7.5 min 10 min 20 min 30 min 5 0.1 0.4 0.6 1.2 2.9 10 0.1 0.4 0.5 1.1 2.4 表 5 GY2-Q9-H47井油基钻井液现场施工性能
井深/
mρ/
g·cm−3FV/
sPV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/Pa碱度 Vs/
%ES/
VFLHTHP/
mL油水比 1891 1.60 51 30 7 6/4 5.0/8 2.2 25 560 2.4 80∶20 2084 1.60 53 31 8 6/5 6.0/9 2.2 25 577 2.2 83∶17 2400 1.62 60 32 8 7/6 6.0/10 2.2 26 630 2.0 85∶15 3100 1.65 61 33 9 8/7 6.0/10 2.2 27 880 2.0 85∶15 3730 1.68 63 34 11 7/6 6.5/11 2.1 30 882 2.2 85∶15 4545 1.70 64 35 12 8/7 7.0/12 2.0 32 881 2.0 86∶14 5526 1.75 65 37 13 10/9 8.0/13 1.6 33 878 2.0 86∶14 -
[1] 杨智光, 潘荣山, 苑晓静, 等. 古龙页岩油开发试验钻井设计优化与实践[J]. 大庆石油地质与开发, 2024, 43(4): 181-190.YANG Zhiguang, PAN Rongshan, YUAN Xiaojing, et al. Optimization and practice of drilling design for Gulong shale oil development test[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(4): 181-190. [2] 冯薇澍, 薛海涛, 李吉君, 等. 齐家-古龙凹陷青一段页岩气有利区预测及资源潜力评价[J]. 科学技术与工程, 2013, 13(9): 2331-2338. doi: 10.3969/j.issn.1671-1815.2013.09.004FENG Weishu, XUE Haitao, LI Jijun, et al. Prediction and resource calculated of K1qn1 shale gas in Qijia-Gulong depression[J]. Science Technology and Engineering, 2013, 13(9): 2331-2338. doi: 10.3969/j.issn.1671-1815.2013.09.004 [3] 冯子辉, 柳波, 邵红梅, 等. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能[J]. 大庆石油地质与开发, 2020, 39(3): 72-85.FENG Zihui, LIU Bo, SHAO Hongmei, et al. The diagenesis evolution and accumulating performance of the mud shale in Qingshankou formation in Gulong area, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 72-85. [4] 黄振凯, 陈建平, 王义军, 等. 松辽盆地白垩系青山口组泥岩微观孔隙特征[J]. 石油学报, 2013, 34(1): 30-36. doi: 10.7623/syxb201301004HUANG Zhenkai, CHEN Jianping, WANG Yijun, et al. Characteristics of micropores in mudstones of the Cretaceous Qingshankou formation, Songliao basin[J]. Acta Petrolei Sinica, 2013, 34(1): 30-36. doi: 10.7623/syxb201301004 [5] 王庆, 张佳伟, 孙铭浩, 等. 大庆油田古龙页岩岩屑在幂律流体中的沉降阻力系数研究[J]. 石油钻探技术, 2023, 51(2): 54-60. doi: 10.11911/syztjs.2023006WANG Qing, ZHANG Jiawei, SUN Minghao, et al. Study on the settlement drag coefficient of Gulong shale cuttings in power-law fluids in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(2): 54-60. doi: 10.11911/syztjs.2023006 [6] 齐悦, 陈绍云, 李海, 等. 松辽盆地古龙页岩水平井井壁失稳机理[J]. 大庆石油地质与开发, 2022, 41(3): 147-155.QI Yue, CHEN Shaoyun, LI Hai, et al. Mechanismf of horizontal wellbore instability for Gulong shale in Songliao basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 147-155. [7] 杨智光, 李吉军, 齐悦, 等. 松辽盆地富含伊利石的古龙页岩水化特性及其对岩石力学参数的影响[J]. 大庆石油地质与开发, 2022, 41(3): 139-146.YANG Zhiguang, LI Jijun, QI Yue, et al. Hydration characteristics of illite-rich Gulong shale and its influence on rock mechanical parameters in Songliao basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 139-146. [8] 于坤, 车健. 大庆油田页岩油水平井钻井液技术[J]. 钻井液与完井液, 2021, 38(3): 311-316.YU Kun, CHE Jian. Drilling fluid technology for shale oil exploration and development in Daqing oilfeld[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 311-316. [9] 李胜, 夏柏如, 韩秀贞, 等. 油水比对油基钻井液性能的影响研究[J]. 油田化学, 2017, 34(2): 196-200.LI Sheng, XIA Bairu, HAN Xiuzhen, et al. Effects of oil-water ratio on performance of oil-based drilling fluid[J]. Oilfield Chemistry, 2017, 34(2): 196-200. [10] 李建华, 窦成义, 李庆钊. 基于颗粒级配的密封黏液制备及应用[J]. 陕西煤炭, 2022, 41(4): 5-9. doi: 10.3969/j.issn.1671-749X.2022.04.002LI Jianhua, DOU Chengyi, LI Qingzhao. Preparation and application of sealing mucus based on particle gradation[J]. Shaanxi Meitan, 2022, 41(4): 5-9. doi: 10.3969/j.issn.1671-749X.2022.04.002 [11] 王利国, 鄢捷年, 冯文强. 理想充填暂堵型钻井完井液的设计及室内评价[J]. 中国石油大学学报(自然科学版), 2007, 31(3): 72-76.WANG Liguo, YAN Jienian, FENG Wenqiang. Design and Lab evaluation of ideal packing bridging drilling and completion fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(3): 72-76. [12] 郭丽梅, 薛锦华, 陈曦. 新型屏蔽暂堵剂ZDJ室内性能评价[J]. 钻井液与完井液, 2016, 33(1): 37-41,47.GUO Limei, XUE Jinhua, CHEN Xi. Laboratory evaluation of a new temporary plugging agent ZDJ[J]. Drilling Fluid & Completion Fluid, 2016, 33(1): 37-41,47. [13] 杜征鸿, 沈建文, 睢圣, 等. 耐高温核壳型油基钻井液纳米封堵剂的制备与性能评价[J]. 油田化学, 2022, 39(1): 1-4,10.DU Zhenghong, SHEN Jianwen, SUI Sheng, et al. Preparation and performance evaluation of core-shell nano plugging agent with high temperature resistance using in oil-based drilling fluid[J]. Oilfield Chemistry, 2022, 39(1): 1-4,10. [14] 王建华, 李建男, 闫丽丽, 等. 油基钻井液用纳米聚合物封堵剂的研制[J]. 钻井液与完井液, 2013, 30(6): 5-8,91. doi: 10.3969/j.issn.1001-5620.2013.06.002WANG Jianhua, LI Jiannan, YAN Lili, et al. The development and performance evaluation of plugging agent for oil-base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 5-8,91. doi: 10.3969/j.issn.1001-5620.2013.06.002 [15] 赵建刚, 张晓翼, 魏红梅, 等. 国外钻井液高温高压滤失性测试新方法[J]. 地质装备, 2014, 15(1): 33-35,27. doi: 10.3969/j.issn.1009-282X.2014.01.008ZHAO Jiangang, ZHANG Xiaoyi, WEI Hongmei, et al. Introduction to a foreign popular permeability plugging apparatus for drilling fluid at high temperature and high pressure[J]. Equipment for Geotechnical Engineering, 2014, 15(1): 33-35,27. doi: 10.3969/j.issn.1009-282X.2014.01.008 -

计量
- 文章访问数: 95
- HTML全文浏览量: 31
- PDF下载量: 7
- 被引次数: 0