A Self-Adaptable High Pressure Bearing Plugging Agent for Synthetic-Based Drilling Fluid in Shallow Extended-Reach Well Drilling in Bohai
-
摘要: 通过对渤海浅层大位移井井漏情况分析,明确了大位移井合成基钻井液自适应高承压封堵剂针对性优化方向:井下地层非均质性强,孔隙、裂缝的尺寸分布具有盲目性,材料需针对未知尺寸孔隙形成有效封堵;钻遇地层微裂缝极其发育,承压能力弱,材料需具有较高抗压强度。针对上述难点,以甲基丙烯酸甲酯为主链,配合多种不同碳链长度的单不饱和脂肪酸酯单体材料,合成了一种吸油膨胀自适应高承压封堵剂OBR-1。实验结果表明,OBR-1在高弹态时的体积膨胀能力强,且吸油后仍具有较高弹性模量,广谱封堵效果好,承压能力强。含2%OBR-1的合成基乳液封堵10~120 μm砂盘承压均能达10 MPa。以OBR-1为核心所构建的高承压封堵合成基钻井液体系封堵20~80目砂床承压达20 MPa,具有良好的承压能力和封堵性能,可为海上大位移井安全高效钻进提供保障。Abstract: The direction in which the properties of the self-adaptable high pressure bearing plugging agent are specifically optimized is understood by analyzing the lost circulation scenarios occurring in shallow extended-reach well drilling in Bohai area, that is, the formations penetrated by the wells have high heterogeneity as well as pores and fractures that are randomly distributed, and lost circulation materials have to effectively plug the pores and fractures with unknown sizes to stop mud losses. The formations penetrated have microfractures that are extremely developed and low pressure bearing capacities, and lost circulation materials must have high compressive strengths. To overcome these difficulties, an oil-absorbing self-adaptable high-pressure bearing plugging agent OBR-1 was synthesized with methyl methacrylate as the backbone and other monounsaturated fatty acid esters with different of carbon chain lengths. Experimental results show that OBR-1 has high volume expansion capacity at rubbery state, high elastic modulus after absorbing oils, good broad-spectrum plugging effect and high pressure bearing capacity. Sand disks of 10-120 μm plugged by a synthetic-based emulsion containing 2%OBR-1 have pressure bearing capacity of 10 MPa. A synthetic-based drilling fluid formulated with OBR-1 as the core material can plug 20-80 mesh sand-beds with pressure bearing capacities of 20 MPa, proving that OBR-1 has excellent pressure bearing capacity and plugging performance, and can provide guarantee for the safe and efficient drilling of offshore extended-reach wells.
-
表 1 不同温度下OBR-1的吸油膨胀性能
T测试/
℃m1/
gm2/
gd1/
mmd2/
mmw/
g·g−1v/
mm3·mm−3弹性
模量/MPa室温 1.03 1.22 1 1.14 0.18 1.48 28.96 120 1.02 1.31 1 1.22 0.28 2.22 20.65 150 1.03 3.93 1 1.67 2.81 4.65 19.95 表 2 在合成基乳液中加入不同封堵材料的封堵性能
封堵材料 FLHTHP/
mL砂盘孔径/
μm累计漏失/
mL最大承压/
MPa0 50.4 120 全漏 2 90 全漏 2 20 全漏 2 10 全漏 2 10~120 全漏 2 2%OBR-1 21.6 120 25.0 10 90 21.0 10 20 8.4 10 10 4.8 10 10~120 2.2 10 2%OSD 18.4 120 58 4 90 55 6 20 5 10 10 5.6 10 10~120 7.4 6 注:合成基乳液:340 mL 1-十八烯+8%乳化剂+2%有机土+3%CaO+60 mL盐水(30%CaCl2溶液)+4%超细钙;FLHTHP在150℃、3.5 MPa下测定;实验测试温度为150℃。 表 3 在井浆中加入2%OBR-1前后的流变参数
OBR-1/
%实验
条件PV/
mPa·sYP/
PaTYS/
PaGel/
Pa/PaES/
VEP FLHTHP/
mL0 老化前 20 17 13.30 13/14 1257 0.11 150℃、16 h 25 14 7.15 8/9 711 0.10 7.2 2 老化前 21 17 13.30 13/14 923 0.09 150℃、16 h 27 13 7.15 7.5/9 839 0.09 3.8 表 4 在井浆中加入OBR-1前后不同渗透率岩心的封堵率(%)
OBR-1/% F150~250 F350~450 F550~650 F750~850 F950~1050 F平均 0 71.55 78.34 79.26 80.25 81.30 78.14 2 95.97 95.21 93.34 91.55 91.43 93.50 -
[1] 张彦军. 石油钻井工程的井漏原因和防漏堵漏工艺方案研究[J]. 科技风, 2024(14): 81-83,93.ZHANG Yanjun. Research on the causes of lost circulation in petroleum drilling engineering and the process plan for leakage prevention and blocking[J]. Technology Wind, 2024(14): 81-83,93. [2] 杨世杰. 渤海油田深井深层防漏堵漏技术策略研究[J]. 石化技术, 2024, 31(5): 135-137.YANG Shijie. Research on the technical strategy of leakage prevention and plugging in the deep well and deep formation of Bohai oilfield[J]. Petrochemical Industry Technology, 2024, 31(5): 135-137. [3] 严君凤, 蒋炳, 罗显粱, 等. 膨胀堵漏材料及堵漏工艺研究进展[C]//第二十二届全国探矿工程. 威海: 中国地质学会, 2023: 68-74.YAN Junfeng, JIANG Bing, LUO Xianliang, et al. Research progress in expansion plugging materials and plugging technology[C]//The 22nd National Exploration Engineering Conference. Weihai: Geological Society of China, 2023: 68-74 [4] 许明标, 赵明琨, 侯珊珊, 等. 油基桥架堵漏剂的研究与应用[J]. 断块油气田, 2018, 25(6): 799-802.XU Mingbiao, ZHAO Mingkun, HOU Shanshan, et al. Research and application of oil-based bridge plugging agent[J]. Fault-Block Oil and Gas Field, 2018, 25(6): 799-802. [5] 张洪利, 郭艳, 王志龙. 国内钻井堵漏材料现状[J]. 特种油气藏, 2004, 11(2): 1-2,10.ZHANG Hongli, GUO Yan, WANG Zhilong. Lost circulation materials in China[J]. Special Oil & Gas Reservoirs, 2004, 11(2): 1-2,10. [6] 吴军, 许明标, 陈林, 等. 一种新型油基堵漏剂的室内研究[J]. 长江大学学报(自科版), 2016, 13(11): 46-48.WU Jun, XU Mingbiao, CHEN Lin, et al. Laboratory study of a new oil-based plugging agent[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(11): 46-48. [7] 徐哲. 钻井液用内刚外柔封堵剂研究[D]. 青岛: 中国石油大学(华东), 2021.XU Zhe. Study on internal rigid and external flexible plugging agent for drilling fluid[D]. Qingdao: China University of Petroleum (East China), 2021. [8] 王灿, 侯士立, 齐奔, 等. 自胶结堵漏技术研究与应用[J]. 钻井液与完井液, 2016, 33(5): 63-66.WANG Can, HOU Shili, QI Ben, et al. Study and application of self-cementation lost circulation control method[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 63-66. [9] 吕开河, 邱正松, 魏慧明, 等. 自适应防漏堵漏钻井液技术研究[J]. 石油学报, 2008, 29(5): 757-760,765.LYU Kaihe, QIU Zhengsong, WEI Huiming, et al. Study on techniques of auto-adapting lost circulation resistance and control for drilling fluid[J]. Acta Petrolei Sinica, 2008, 29(5): 757-760,765. [10] ZHONG H Y, SHEN G C, QIU Z S, et al. Minimizing the HTHP filtration loss of oil-based drilling fluid with swellable polymer microspheres[J]. Journal of Petroleum Science and Engineering, 2019, 172: 411-424. doi: 10.1016/j.petrol.2018.09.074 [11] ZHANG T, LI Z D, LÜ Y, et al. Recent progress and future prospects of oil-absorbing materials[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1282-1295. doi: 10.1016/j.cjche.2018.09.001 [12] BAI Y R, DAI L Y, SUN J S, et al. Experimental study on an oil-absorbing resin used for lost circulation control during drilling[J]. Journal of Petroleum Science and Engineering, 2022, 214: 110557. doi: 10.1016/j.petrol.2022.110557 [13] 刘静, 马诚, 杨超, 等. 井漏地层钻井液堵漏材料研究现状与展望[J]. 油田化学, 2023, 40(4): 729-735.LIU Jing, MA Cheng, YANG Chao, et al. Current status and prospects of drilling fluid plugging materials for lost circulation formations[J]. Oilfield Chemistry, 2023, 40(4): 729-735. [14] 李劲松, 翁昊阳, 段飞飞, 等. 钻井液类型对井壁稳定的影响实例与防塌机理分析[J]. 科学技术与工程, 2019, 19(26): 161-167. doi: 10.3969/j.issn.1671-1815.2019.26.024LI Jinsong, WENG Haoyang, DUAN Feifei, et al. Cases of the influence of drilling fluid type on borehole stability and analysis of anti-collapse mechanism[J]. Science Technology and Engineering, 2019, 19(26): 161-167. doi: 10.3969/j.issn.1671-1815.2019.26.024 [15] 李红梅, 申峰, 吴金桥, 等. 新型油基钻井液堵漏剂性能[J]. 钻井液与完井液, 2016, 33(2): 41-44.LI Hongmei, SHEN Feng, WU Jinqiao, et al. Study on performance of a new oil base mud lost circulation material[J]. Drilling Fluid & Completion Fluid, 2016, 33(2): 41-44. [16] 赖全勇, 杨洁, 谌鹏飞. 绥中36-1油田井壁承压封堵性研究[J]. 中国新技术新产品, 2023(19): 73-75.LAI Quanyong, YANG Jie, CHEN Pengfei. Study on pressure plugging of wellbore in Suizhong 36-1 oilfield[J]. New Technologies and New Products of China, 2023(19): 73-75. [17] 董云峰, 韩成. 油基钻井液堵漏体系及材料研究进展[J]. 化工设计通讯, 2023, 49(11): 37-39. doi: 10.3969/j.issn.1003-6490.2023.11.014DONG Yunfeng, HAN Cheng. Research progress in oil-based drilling fluid plugging systems and materials[J]. Chemical Engineering Design Communications, 2023, 49(11): 37-39. doi: 10.3969/j.issn.1003-6490.2023.11.014 [18] 陈军, 王平, 李占超. 油基钻井液防漏堵漏理论与技术研究进展[J]. 当代化工研究, 2022(12): 162-164.CHEN Jun, WANG Ping, LI Zhanchao. Research progress of oil-based drilling fluid lost circulation prevention and control theory and technology[J]. Modern Chemical Research, 2022(12): 162-164. [19] 孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 76-89.SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 76-89. [20] HAGEN R, SALMEN L, STENBERG B. Effects of the type of crosslink on viscoelastic properties of natural rubber[J]. Journal of Polymer Science Part B-Polymer Physics, 1996, 34(12): 1997-2006. doi: 10.1002/(SICI)1099-0488(19960915)34:12<1997::AID-POLB5>3.0.CO;2-N -