留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适合海上高温油藏的压裂液性能对比及优选

滕大勇 丁秋炜 金鑫 张昕 陈庆栋 周际永

滕大勇,丁秋炜,金鑫,等. 适合海上高温油藏的压裂液性能对比及优选[J]. 钻井液与完井液,2025,42(4):546-553 doi: 10.12358/j.issn.1001-5620.2025.04.015
引用本文: 滕大勇,丁秋炜,金鑫,等. 适合海上高温油藏的压裂液性能对比及优选[J]. 钻井液与完井液,2025,42(4):546-553 doi: 10.12358/j.issn.1001-5620.2025.04.015
TENG Dayong, DING Qiuwei, JIN Xin, et al.Performance comparison and selection of a fracturing fluid suitable for high temperature offshore reservoirs[J]. Drilling Fluid & Completion Fluid,2025, 42(4):546-553 doi: 10.12358/j.issn.1001-5620.2025.04.015
Citation: TENG Dayong, DING Qiuwei, JIN Xin, et al.Performance comparison and selection of a fracturing fluid suitable for high temperature offshore reservoirs[J]. Drilling Fluid & Completion Fluid,2025, 42(4):546-553 doi: 10.12358/j.issn.1001-5620.2025.04.015

适合海上高温油藏的压裂液性能对比及优选

doi: 10.12358/j.issn.1001-5620.2025.04.015
基金项目: 国家科技重大专项“新一代复杂储层改造关键技术与装备”课题二“多功能型压裂液体系与高性能材料研发”(2024ZD1404702),中海油能源发展股份有限公司科技重大专项“采油化学品自主化研发及产业化应用(Ⅱ期)”(HFKJ-ZD-GJ-2024-03-03)。
详细信息
    作者简介:

    滕大勇,高级工程师,1980年生,博士,毕业于南开大学高分子物理与化学专业,现在从事油气田压裂增产化学品的研究工作。电话 13752515684;E-mail:tengdy@cnooc.com.cn

  • 中图分类号: TE357.12

Performance Comparison and Selection of a Fracturing Fluid Suitable for High Temperature Offshore Reservoirs

  • 摘要: 针对海上压裂空间小、储层温度高、需海水配液等受限条件对海水基压裂液的性能需求,开发一种耐高温海水基聚合物压裂液,评价其耐温耐剪切、黏弹性、高温变剪切、触变性、携砂性能、静态滤失、破胶性能及返排液重复利用等性能并与瓜胶压裂液进行对比研究。研究表明,与瓜胶压裂液相比,聚合物压裂液在150℃高温剪切时初始呈现线性胶状态,可降低井筒泵送摩阻,在高温条件下增稠能力更强,高温剪切条件下结构更加稳定,携砂性能更好,滤失、破胶后残渣更低,对储层伤害小,可使用模拟返排液直接配液使用,成本比瓜胶压裂液低12.2%,适合于在海上压裂施工中应用。

     

  • 图  1  150℃下海水基压裂液耐温耐剪切性能对比

    图  2  高温剪切后海水基压裂液冻胶黏弹性

    图  3  海水基压裂液冻胶流变曲线

    图  4  海水基压裂液冻胶触变性

    图  5  海水基压裂液静态滤失

    图  6  海水基压裂液破胶残渣状态

    图  7  海水配液与破胶液配液的聚合物压裂液耐温耐剪切性能对比

    表  1  海水基压裂液的稠度系数和幂律指数

    海水基压裂液剪切速率/s−1K/Pa·snn
    瓜胶10~20810.720.0703
    20~2000.9984
    聚合物10~701288.950.3033
    70~1001.8984
    100~2002332.930.0033
    下载: 导出CSV

    表  2  海水基压裂液携砂静态沉降测试

    海水基压裂液砂比/%1 h沉降率/%2 h沉降率/%
    瓜胶2045
    3000
    4000
    聚合物2055
    3000
    4000
    下载: 导出CSV

    表  3  海水基压裂液破胶性能

    海水基压裂液 破胶剂/
    %
    t破胶/
    min
    η/
    mPa·s
    破胶残渣含量/
    mg·L−1
    聚合物 0.1 120 3.3 48
    瓜胶 2.5 274
    下载: 导出CSV
  • [1] 范白涛, 陈峥嵘, 姜浒, 等. 中国海油非常规和海上低渗储层压裂技术现状与展望[J]. 中国海上油气,2021,33(4):112-119.

    FAN Baitao, CHEN Zhengrong, JIANG Hu, et al. Status and prospect of fracturing technology for CNOOC unconventional and offshore low permeability reservoirs[J]. China Offshore Oil and Gas, 2021, 33(4):112-119.
    [2] 滕大勇, 范友泉, 丁秋炜, 等. 一种多功能悬浮浓缩压裂液及其制备方法: CN202210045880.9[P]. 2022-01-17.

    TENG Dayong, FAN Youquan, DING Qiuwei, et al. A multifunctional suspension concentrated fracturing fluid and its preparation method: CN202210045880.9[P]. 2022-01-17.
    [3] 刘雨舟, 张志坚, 王磊, 等. 国内变黏滑溜水研究进展及在川渝非常规气藏的应用[J]. 石油与天然气化工,2022,51(3):76-81,90. doi: 10.3969/j.issn.1007-3426.2022.03.012

    LIU Yuzhou, ZHANG Zhijian, WANG Lei, et al. Research progress of variable viscosity slick water in China and its application in unconventional gas reservoi rs in Sichuan and Chongqing[J]. Chemical Engineering of Oil and Gas, 2022, 51(3):76-81,90. doi: 10.3969/j.issn.1007-3426.2022.03.012
    [4] 段贵府, 胥云, 卢拥军, 等. 耐超高温压裂液体系研究与现场试验[J]. 钻井液与完井液,2014,31(3):75-77. doi: 10.3969/j.issn.1001-5620.2014.03.020

    DUAN Guifu, XU Yun, LU Yongjun, et al. Study and field application of an ultrahigh temperature fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):75-77. doi: 10.3969/j.issn.1001-5620.2014.03.020
    [5] 张宸. 海上油田高效施工的压裂液体系及配套工艺[J]. 河南科技,2021,40(35):114-116. doi: 10.3969/j.issn.1003-5168.2021.35.040

    ZHANG Chen. Fracturing fluid system and supporting technology for efficient construction in offshore oilfields[J]. Henan Science and Technology, 2021, 40(35):114-116. doi: 10.3969/j.issn.1003-5168.2021.35.040
    [6] 许田鹏, 李梦, 赵健, 等. 海水基胍胶压裂液优选及现场应用[J]. 石油化工应用,2021,40(6):97-100. doi: 10.3969/j.issn.1673-5285.2021.06.023

    XU Tianpeng, LI Meng, ZHAO Jian, et al. Optimization and application of seawater-based guar gum fracturing fluid[J]. Petrochemical Industry Application, 2021, 40(6):97-100. doi: 10.3969/j.issn.1673-5285.2021.06.023
    [7] 严芳芳. 有机锆交联聚合物和羟丙基瓜胶压裂液及流变动力学研究[D]. 上海: 华东理工大学, 2014.

    YAN Fangfang. Study on organic Zirconium crosslinked polymer and hydroxypropyl guar fracturing fluids and their rheokinetics[D]. Shanghai: East China University of Science and Technology, 2014.
    [8] 张昀, 李兆敏, 刘己全, 等. 疏水缔合聚合物压裂液稠化剂LP-3A的研究[J]. 钻井液与完井液,2016,33(5):119-123.

    ZHANG Yun, LI Zhaomin, LIU Jiquan, et al. Study on a hydrophobically associating polymer viscosifier for fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):119-123.
    [9] 赵万伟, 李年银, 王川, 等. 酸性交联压裂液性能对比研究[J]. 石油与天然气化工,2019,48(4):86-89. doi: 10.3969/j.issn.1007-3426.2019.04.015

    ZHAO Wanwei, LI Nianyin, WANG Chuan, et al. Comparative research on performances of acidic fracturing fluid[J]. Chemical Engineering of Oil and Gas, 2019, 48(4):86-89. doi: 10.3969/j.issn.1007-3426.2019.04.015
    [10] 滕大勇, 金鑫, 丁秋炜, 等. 耐高温海水基压裂液聚合物稠化剂流变性能[J]. 石油化工,2024,53(3):374-382. doi: 10.3969/j.issn.1000-8144.2024.03.010

    TENG Dayong, JIN Xin, DING Qiuwei, et al. Rheological properties of polymer thickener for high-temperature resistant seawater-based fracturing fluid[J]. Petrochemical Technology, 2024, 53(3):374-382. doi: 10.3969/j.issn.1000-8144.2024.03.010
    [11] 张晓琪, 汤鲁馨, 方波, 等. P(MAA/AMPS/DMAM/NVCL)稠化剂的制备及其交联过程流变性能分析[J]. 油田化学,2020,37(3):397-402.

    ZHANG Xiaoqi, TANG Luxin, FANG Bo, et al. Rheological properties of P(MAA/AMPS/DMAM/NVCL) thickener solution and its crosslinking process[J]. Oilfield Chemistry, 2020, 37(3):397-402.
    [12] 伊卓, 刘希, 方昭, 等. 耐温抗盐驱油聚合物溶液黏弹性[J]. 应用化学,2017,34(2):187-194. doi: 10.11944/j.issn.1000-0518.2017.02.160118

    YI Zhuo, LIU Xi, FANG Zhao, et al. Viscoelasticity of temperature-tolerant and salt-resistant flooding polymer solutions[J]. Chinese Journal of Applied Chemistry, 2017, 34(2):187-194. doi: 10.11944/j.issn.1000-0518.2017.02.160118
    [13] 韩非. 聚合物缓释交联体系的研发及在压裂液中的应用[D]. 西安: 陕西科技大学, 2022.

    HAN Fei. Development of polymer slow-release crosslinking system and application in fracturing fluid[D]. Xi'an: Shanxi University of Science & Technology, 2022.
    [14] 苏禹. 抗盐聚合物粘弹特性及驱油效果评价[D]. 大庆: 东北石油大学, 2022.

    SU Yu. Evaluation of viscoelastic properties and oil displacement effect of salt resistant polymer[D]. [S. l. ]: Northeast Petroleum University, 2022.
    [15] 张昀. 低分子聚合物压裂液体系流变性能及携砂规律研究[D]. 东营: 中国石油大学(华东), 2016.

    ZHANG Yun. Experimental study on rheological properties and proppant carrying capability of low molecular polymer fracturing fluid[D]. Dongying: China University of Petroleum(East China), 2016.
    [16] 徐文江, 肖茂林, 孙兴旺, 等. 海上低渗透油田水平井多级压裂先导试验[J]. 中国海上油气,2017,29(6):108-114. doi: 10.11935/j.issn.1673-1506.2017.06.014

    XU Wenjiang, XIAO Maolin, SUN Xingwang, et al. Pilot test of multi-stage fracturing technology for horizontal wells in offshore low permeability reservoirs[J]. China Offshore Oil and Gas, 2017, 29(6):108-114. doi: 10.11935/j.issn.1673-1506.2017.06.014
    [17] 刘鹏, 许杰, 徐刚, 等. 渤中25-1油田低渗透储层水平井分段压裂先导试验[J]. 油气井测试,2018,27(3):52-57.

    LIU Peng, XU Jie, XU Gang, et al. Pilot test of horizontal well staged fracturing for low permeability reservoirs in BZ25-1 oilfield[J]. Well Testing, 2018, 27(3):52-57.
    [18] 何婷婷. 压裂返排液重复再利用技术室内实验研究[D]. 西安: 西安石油大学, 2016.

    HE Tingting. The laboratory experimental studies on fracturing flowback fluid recycling and reuse[D]. Xi'an: Xi'an Shiyou University, 2016.
    [19] 吴越, 周怡, 蔡远红, 等. 压裂返排液中残余硼交联剂掩蔽方法[J]. 石油钻采工艺,2017,39(5):652-657.

    WU Yue, ZHOU Yi, CAI Yuanhong, et al. A masking method used for the Boron crosslinker remained in the backflow of fracturing fluid[J]. Oil Drilling & Production Technology, 2017, 39(5):652-657.
    [20] 宫大军,吴志明,白岩,等. 低成本耐高温海水基胍胶压裂液[J]. 钻井液与完井液,2024,41(2):256-261.

    GONG Dajun, WU Zhiming, BAI Yan, et al. A low cost high temperature seawater-based guar gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):256-261
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-09
  • 修回日期:  2025-03-09
  • 录用日期:  2025-03-15
  • 刊出日期:  2025-07-31

目录

    /

    返回文章
    返回