Performance Comparison and Selection of a Fracturing Fluid Suitable for High Temperature Offshore Reservoirs
-
摘要: 针对海上压裂空间小、储层温度高、需海水配液等受限条件对海水基压裂液的性能需求,开发一种耐高温海水基聚合物压裂液,评价其耐温耐剪切、黏弹性、高温变剪切、触变性、携砂性能、静态滤失、破胶性能及返排液重复利用等性能并与瓜胶压裂液进行对比研究。研究表明,与瓜胶压裂液相比,聚合物压裂液在150℃高温剪切时初始呈现线性胶状态,可降低井筒泵送摩阻,在高温条件下增稠能力更强,高温剪切条件下结构更加稳定,携砂性能更好,滤失、破胶后残渣更低,对储层伤害小,可使用模拟返排液直接配液使用,成本比瓜胶压裂液低12.2%,适合于在海上压裂施工中应用。Abstract: Several special problems, such as narrow operation space, high reservoir temperature and formulation of fracturing fluids with seawater etc. exist in offshore fracturing operations and present special requirements for the performance of fracturing fluids. To deal with these problems, a high temperature seawater-based polymer fracturing fluid was developed and evaluated for its high temperature stability, shear resistance performance, viscoelasticity, shearing property at high rate of temperature variation, thixotropy, sand carrying capacity, static filtration property, gel breaking performance as well as the recycle of the flowback fluids etc. A comparative study was conducted with a guar gum fracturing fluid. Research shows that unlike the guar gum fracturing fluid, this high temperature seawater-based polymer fracturing fluid, when undergoing high-temperature shearing at 150℃, initially presents a linear gel state, by which the pumping friction in the well can be reduced. At elevated temperatures, this polymer fracturing fluid has better thickening capacity. When sheared at high temperatures, the structure of the polymer becomes more stable, thereby enhancing the sand carrying capacity of the fracturing fluid. After filtration and gel breaking, the amount of the residues left over is much lower than that of the guar gum fracturing fluid, imposing only slight formation damage. This polymer fracturing fluid can be formulated with simulated flowback fluid, its cost is 12.2% lower than that of the guar gum fluid, and is suitable for offshore fracturing operations.
-
表 1 海水基压裂液的稠度系数和幂律指数
海水基压裂液 剪切速率/s−1 K/Pa·sn n 瓜胶 10~20 810.72 0.0703 20~200 0.9984 聚合物 10~70 1288.95 0.3033 70~100 1.8984 100~200 2332.93 0.0033 表 2 海水基压裂液携砂静态沉降测试
海水基压裂液 砂比/% 1 h沉降率/% 2 h沉降率/% 瓜胶 20 4 5 30 0 0 40 0 0 聚合物 20 5 5 30 0 0 40 0 0 表 3 海水基压裂液破胶性能
海水基压裂液 破胶剂/
%t破胶/
minη/
mPa·s破胶残渣含量/
mg·L−1聚合物 0.1 120 3.3 48 瓜胶 2.5 274 -
[1] 范白涛, 陈峥嵘, 姜浒, 等. 中国海油非常规和海上低渗储层压裂技术现状与展望[J]. 中国海上油气,2021,33(4):112-119.FAN Baitao, CHEN Zhengrong, JIANG Hu, et al. Status and prospect of fracturing technology for CNOOC unconventional and offshore low permeability reservoirs[J]. China Offshore Oil and Gas, 2021, 33(4):112-119. [2] 滕大勇, 范友泉, 丁秋炜, 等. 一种多功能悬浮浓缩压裂液及其制备方法: CN202210045880.9[P]. 2022-01-17.TENG Dayong, FAN Youquan, DING Qiuwei, et al. A multifunctional suspension concentrated fracturing fluid and its preparation method: CN202210045880.9[P]. 2022-01-17. [3] 刘雨舟, 张志坚, 王磊, 等. 国内变黏滑溜水研究进展及在川渝非常规气藏的应用[J]. 石油与天然气化工,2022,51(3):76-81,90. doi: 10.3969/j.issn.1007-3426.2022.03.012LIU Yuzhou, ZHANG Zhijian, WANG Lei, et al. Research progress of variable viscosity slick water in China and its application in unconventional gas reservoi rs in Sichuan and Chongqing[J]. Chemical Engineering of Oil and Gas, 2022, 51(3):76-81,90. doi: 10.3969/j.issn.1007-3426.2022.03.012 [4] 段贵府, 胥云, 卢拥军, 等. 耐超高温压裂液体系研究与现场试验[J]. 钻井液与完井液,2014,31(3):75-77. doi: 10.3969/j.issn.1001-5620.2014.03.020DUAN Guifu, XU Yun, LU Yongjun, et al. Study and field application of an ultrahigh temperature fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):75-77. doi: 10.3969/j.issn.1001-5620.2014.03.020 [5] 张宸. 海上油田高效施工的压裂液体系及配套工艺[J]. 河南科技,2021,40(35):114-116. doi: 10.3969/j.issn.1003-5168.2021.35.040ZHANG Chen. Fracturing fluid system and supporting technology for efficient construction in offshore oilfields[J]. Henan Science and Technology, 2021, 40(35):114-116. doi: 10.3969/j.issn.1003-5168.2021.35.040 [6] 许田鹏, 李梦, 赵健, 等. 海水基胍胶压裂液优选及现场应用[J]. 石油化工应用,2021,40(6):97-100. doi: 10.3969/j.issn.1673-5285.2021.06.023XU Tianpeng, LI Meng, ZHAO Jian, et al. Optimization and application of seawater-based guar gum fracturing fluid[J]. Petrochemical Industry Application, 2021, 40(6):97-100. doi: 10.3969/j.issn.1673-5285.2021.06.023 [7] 严芳芳. 有机锆交联聚合物和羟丙基瓜胶压裂液及流变动力学研究[D]. 上海: 华东理工大学, 2014.YAN Fangfang. Study on organic Zirconium crosslinked polymer and hydroxypropyl guar fracturing fluids and their rheokinetics[D]. Shanghai: East China University of Science and Technology, 2014. [8] 张昀, 李兆敏, 刘己全, 等. 疏水缔合聚合物压裂液稠化剂LP-3A的研究[J]. 钻井液与完井液,2016,33(5):119-123.ZHANG Yun, LI Zhaomin, LIU Jiquan, et al. Study on a hydrophobically associating polymer viscosifier for fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):119-123. [9] 赵万伟, 李年银, 王川, 等. 酸性交联压裂液性能对比研究[J]. 石油与天然气化工,2019,48(4):86-89. doi: 10.3969/j.issn.1007-3426.2019.04.015ZHAO Wanwei, LI Nianyin, WANG Chuan, et al. Comparative research on performances of acidic fracturing fluid[J]. Chemical Engineering of Oil and Gas, 2019, 48(4):86-89. doi: 10.3969/j.issn.1007-3426.2019.04.015 [10] 滕大勇, 金鑫, 丁秋炜, 等. 耐高温海水基压裂液聚合物稠化剂流变性能[J]. 石油化工,2024,53(3):374-382. doi: 10.3969/j.issn.1000-8144.2024.03.010TENG Dayong, JIN Xin, DING Qiuwei, et al. Rheological properties of polymer thickener for high-temperature resistant seawater-based fracturing fluid[J]. Petrochemical Technology, 2024, 53(3):374-382. doi: 10.3969/j.issn.1000-8144.2024.03.010 [11] 张晓琪, 汤鲁馨, 方波, 等. P(MAA/AMPS/DMAM/NVCL)稠化剂的制备及其交联过程流变性能分析[J]. 油田化学,2020,37(3):397-402.ZHANG Xiaoqi, TANG Luxin, FANG Bo, et al. Rheological properties of P(MAA/AMPS/DMAM/NVCL) thickener solution and its crosslinking process[J]. Oilfield Chemistry, 2020, 37(3):397-402. [12] 伊卓, 刘希, 方昭, 等. 耐温抗盐驱油聚合物溶液黏弹性[J]. 应用化学,2017,34(2):187-194. doi: 10.11944/j.issn.1000-0518.2017.02.160118YI Zhuo, LIU Xi, FANG Zhao, et al. Viscoelasticity of temperature-tolerant and salt-resistant flooding polymer solutions[J]. Chinese Journal of Applied Chemistry, 2017, 34(2):187-194. doi: 10.11944/j.issn.1000-0518.2017.02.160118 [13] 韩非. 聚合物缓释交联体系的研发及在压裂液中的应用[D]. 西安: 陕西科技大学, 2022.HAN Fei. Development of polymer slow-release crosslinking system and application in fracturing fluid[D]. Xi'an: Shanxi University of Science & Technology, 2022. [14] 苏禹. 抗盐聚合物粘弹特性及驱油效果评价[D]. 大庆: 东北石油大学, 2022.SU Yu. Evaluation of viscoelastic properties and oil displacement effect of salt resistant polymer[D]. [S. l. ]: Northeast Petroleum University, 2022. [15] 张昀. 低分子聚合物压裂液体系流变性能及携砂规律研究[D]. 东营: 中国石油大学(华东), 2016.ZHANG Yun. Experimental study on rheological properties and proppant carrying capability of low molecular polymer fracturing fluid[D]. Dongying: China University of Petroleum(East China), 2016. [16] 徐文江, 肖茂林, 孙兴旺, 等. 海上低渗透油田水平井多级压裂先导试验[J]. 中国海上油气,2017,29(6):108-114. doi: 10.11935/j.issn.1673-1506.2017.06.014XU Wenjiang, XIAO Maolin, SUN Xingwang, et al. Pilot test of multi-stage fracturing technology for horizontal wells in offshore low permeability reservoirs[J]. China Offshore Oil and Gas, 2017, 29(6):108-114. doi: 10.11935/j.issn.1673-1506.2017.06.014 [17] 刘鹏, 许杰, 徐刚, 等. 渤中25-1油田低渗透储层水平井分段压裂先导试验[J]. 油气井测试,2018,27(3):52-57.LIU Peng, XU Jie, XU Gang, et al. Pilot test of horizontal well staged fracturing for low permeability reservoirs in BZ25-1 oilfield[J]. Well Testing, 2018, 27(3):52-57. [18] 何婷婷. 压裂返排液重复再利用技术室内实验研究[D]. 西安: 西安石油大学, 2016.HE Tingting. The laboratory experimental studies on fracturing flowback fluid recycling and reuse[D]. Xi'an: Xi'an Shiyou University, 2016. [19] 吴越, 周怡, 蔡远红, 等. 压裂返排液中残余硼交联剂掩蔽方法[J]. 石油钻采工艺,2017,39(5):652-657.WU Yue, ZHOU Yi, CAI Yuanhong, et al. A masking method used for the Boron crosslinker remained in the backflow of fracturing fluid[J]. Oil Drilling & Production Technology, 2017, 39(5):652-657. [20] 宫大军,吴志明,白岩,等. 低成本耐高温海水基胍胶压裂液[J]. 钻井液与完井液,2024,41(2):256-261.GONG Dajun, WU Zhiming, BAI Yan, et al. A low cost high temperature seawater-based guar gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):256-261 -