留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体防窜增韧剂制备与性能评价

李小林 王其可 许艺馨 齐奔 凌勇 闫振峰

李小林,王其可,许艺馨,等. 固体防窜增韧剂制备与性能评价[J]. 钻井液与完井液,2025,42(4):537-545 doi: 10.12358/j.issn.1001-5620.2025.04.014
引用本文: 李小林,王其可,许艺馨,等. 固体防窜增韧剂制备与性能评价[J]. 钻井液与完井液,2025,42(4):537-545 doi: 10.12358/j.issn.1001-5620.2025.04.014
LI Xiaolin, WANG Qike, XU Yixin, et al.Preparation and performance evaluation of a solid anti-channeling toughening agent[J]. Drilling Fluid & Completion Fluid,2025, 42(4):537-545 doi: 10.12358/j.issn.1001-5620.2025.04.014
Citation: LI Xiaolin, WANG Qike, XU Yixin, et al.Preparation and performance evaluation of a solid anti-channeling toughening agent[J]. Drilling Fluid & Completion Fluid,2025, 42(4):537-545 doi: 10.12358/j.issn.1001-5620.2025.04.014

固体防窜增韧剂制备与性能评价

doi: 10.12358/j.issn.1001-5620.2025.04.014
基金项目: 中国石油渤海钻探工程有限公司指导项目“固体胶乳防窜剂开发”(2021D28F)。
详细信息
    作者简介:

    李小林,硕士,毕业于西南石油大学油气井工程专业,现在主要从事固井外加剂及固井工艺的研究工作。电话(022)25961706;E-mail:lxiaolin@cnpc.com.cn

  • 中图分类号: TE256.6

Preparation and Performance Evaluation of a Solid Anti-channeling Toughening Agent

  • 摘要: 针对丁苯胶乳在实际使用过程中存放稳定性差、加量大、现场配制劳动强度高等问题,通过引入对苯乙烯磺酸钠、衣康酸,提高耐温抗盐性和亲水性,合成了可再分散性能优异的SISBR固体胶乳粉末,研究不同衣康酸加量对胶乳性能的影响。通过红外光谱、Zeta电位、透射电子显微镜、紫外可见吸收光谱对胶乳粉进行了表征,评价了其抗温抗盐性。实验表明,改性后的羧化丁苯胶乳粒子分散均匀,稳定性好,可分散性能优异。磺酸基团和羧基的引入,提高了分子的刚性,衣康酸加量为3%时,耐温达260℃以上,且抗盐性能优异。胶乳粉能够均匀分散在水泥中,可明显改善水泥浆的流变性能,且具有良好的成膜性和填充效果。加入2.4%SISBR-3胶乳粉,水泥石的力学性能改善最为明显,改性后的水泥浆表现出优异的弹韧性和防窜性能。

     

  • 图  1  不同IA加量下合成的SISBR粉末的红外光谱

    图  2  不同IA加量下SISBR胶乳的Zeta电位

    图  3  不同胶乳粉的透射电镜图

    图  4  不同胶乳粉的紫外吸收光谱曲线

    图  5  不同IA加量下合成的SISBR粉末的热失重曲线

    图  6  水泥浆流动度((a)不同IA加量合成SISBR粉末;(b)不同SISBR-3加量)

    图  7  水泥浆流变性能测试((a)不同IA加量合成的SISBR粉末;(b)不同SISBR-3加量)

    图  8  加入SISBR粉末后水泥浆的显微结构

    图  9  不同IA加量合成SISBR粉末的吸附量

    图  10  60℃下不同水泥石的抗折强度

    图  11  60℃下不同水泥石的抗压强度

    图  12  三轴应力应变曲线

    图  13  不同水泥石的SEM图

    图  14  不同水泥石的孔径分布

    图  15  90℃下加入2.4% SISBR-3水泥浆的静胶凝曲线

    表  1  不同IA加量下合成的SISBR粉末的耐盐性能

    胶乳饱和NaCl溶液饱和MgCl2溶液饱和CaCl2溶液
    SISBR-1稳定稳定黏度增大,无絮凝
    SISBR-3稳定稳定黏度增大,无絮凝
    SISBR-5稳定稳定黏度增大,无絮凝
    下载: 导出CSV
  • [1] 李明, 刘萌, 杨元意, 等. 碳酸钙晶须与碳纤维混杂增强油井水泥石力学性能[J]. 石油勘探与开发,2015,42(1):94-100. doi: 10.11698/PED.2015.01.12

    LI Ming, LIU Meng, YANG Yuanyi, et al. Mechanical properties of oil well cement stone reinforced with hybrid fiber of calcium carbonate whisker and carbon fiber[J]. Petroleum Exploration and Development, 2015, 42(1):94-100. doi: 10.11698/PED.2015.01.12
    [2] 赵金, 张遂安, 马东民, 等. 注二氧化碳提高煤层气采收率数值模拟[J]. 天然气与石油,2012,30(1):67-70. doi: 10.3969/j.issn.1006-5539.2012.01.020

    ZHAO Jin, ZHANG Suian, MA Dongmin, et al. Numerical simulation study on carbon dioxide injection to enhance CBM recovery[J]. Natural Gas and Oil, 2012, 30(1):67-70. doi: 10.3969/j.issn.1006-5539.2012.01.020
    [3] SILVA F D A, MOBASHER B, FILHO R D T. Cracking mechanisms in durable sisal fiber reinforced cement composites[J]. Cement and Concrete Composites, 2009, 31(10):721-730. doi: 10.1016/j.cemconcomp.2009.07.004
    [4] 屈季辉. 防气窜固井技术应用[J]. 石化技术,2018,25(1):12. doi: 10.3969/j.issn.1006-0235.2018.01.008

    QU Jihui. Application of gas channeling prevention cementing technology[J]. Petrochemical Industry Technology, 2018, 25(1):12. doi: 10.3969/j.issn.1006-0235.2018.01.008
    [5] 龙丹, 程小伟, 时宇, 等. 微细橡胶粉对油井水泥基复合材料性能的影响[J]. 硅酸盐通报,2015,34(9):2629-2633,2638.

    LONG Dan, CHENG Xiaowei, SHI Yu, et al. Properties of oil well cement-based composite with minute rubber powder[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(9):2629-2633,2638.
    [6] 李文建, 姚晓, 王太聪. 国外胶乳水泥固井技术[J]. 石油钻探技术,1997(2):35-37.

    LI Wenjian, YAO Xiao, WANG Taicong. Latex cement cementing technology abroad[J]. Petroleum Drilling Techniques, 1997(2):35-37.
    [7] 张松. 固体胶乳粉改善水泥石性能试验研究[D]. 成都: 西南石油大学, 2012.

    ZHANG Song. Experimental study on performance improvement of cement stone by solid latex powder[D]. Chengdu: Southwest Petroleum University, 2012.
    [8] 于林, 谭慧静, 任阳, 等. 三高条件对弹韧性水泥浆性能的影响及短期腐蚀机理[J]. 钻井液与完井液,2023,40(2):222-232. doi: 10.12358/j.issn.1001-5620.2023.02.011

    YU Lin, TAN Huijing, REN Yang, et al. Study on the influence of elastic toughness cement slurry performance and short-term corrosion mechanism under HPHTHS conditions[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):222-232. doi: 10.12358/j.issn.1001-5620.2023.02.011
    [9] 田野, 宋维凯, 侯亚伟, 等. 大温差低密度水泥浆性能研究[J]. 钻井液与完井液,2021,38(3):346-350.

    TIAN Ye, SONG Weikai, HOU Yawei, et al. Study on performance of Low-Density cement slurry at big temperature differences[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):346-350.
    [10] 俞嘉敏, 李明, 靳建洲, 等. 固井水泥石增韧材料的研究进展[J]. 硅酸盐通报,2017,36(9):3013-3019.

    YU Jiamin, LI Ming, JIN Jianzhou, et al. Research progress of Toughening-Enhancing materials in oil well cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9):3013-3019.
    [11] 雷鑫宇, 张直建, 焦利宾, 等. 新型胶乳的合成及其在实心低密度水泥中的应用研究[J]. 精细石油化工进展,2014,15(3):1-3,18. doi: 10.3969/j.issn.1009-8348.2014.03.001

    LEI Xinyu, ZHANG Zhijian, JIAO Libin, et al. Synthesis of a novel latex and its application in solid low-density cement[J]. Advances in Fine Petrochemicals, 2014, 15(3):1-3,18. doi: 10.3969/j.issn.1009-8348.2014.03.001
    [12] 齐奔, 付家文, 孙勤亮, 等. 一种抗盐抗高温非离子型防窜丁苯胶乳[J]. 钻井液与完井液,2016,33(2):79-83.

    QI Ben, FU Jiawen, SUN Qinliang, et al. High temperature salt resistant nonionic anti-channeling styrene butadiene latex[J]. Drilling Fluid & Completion Fluid, 2016, 33(2):79-83.
    [13] 郭锦棠, 王泽辉, 杜江波, 等. 由两种不同功能单体制备的油井水泥胶乳性能评价[J]. 天津大学学报(自然科学与工程技术版),2019,52(8):843-848.

    GUO Jintang, WANG Zehui, DU Jiangbo, et al. Performance evaluation of oil well cement latexes prepared with two different functional monomers via emulsion polymerization[J]. Journal of Tianjin University Science and Technology, 2019, 52(8):843-848.
    [14] 王其可, 李小林, 肖尧, 等. 复合乳化剂作用下抗温耐盐丁苯胶乳的制备及性能评价[J]. 钻井液与完井液,2024,41(1):112-118. doi: 10.12358/j.issn.1001-5620.2024.01.013

    WANG Qike, LI Xiaolin, XIAO Yao, et al. Preparation of a high temperature-and Salt-Resistant styrene butadiene latex under the action of composite emulsifiers and the performance evaluation thereof[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):112-118. doi: 10.12358/j.issn.1001-5620.2024.01.013
    [15] 郭锦棠, 张振光, 于永金, 等. 聚丁二烯基胶乳水泥增韧剂的制备及性能评价[J]. 天津大学学报(自然科学与工程技术版),2017,50(3):262-267.

    GUO Jintang, ZHANG Zhenguang, YU Yongjin, et al. Preparation and properties evaluation of Polybutadiene-Based latex cement toughener[J]. Journal of Tianjin University Science and Technology, 2017, 50(3):262-267.
    [16] 齐奔, 杜滨, 高雪晴, 等. 油井水泥用胶乳的研究进展[J]. 石油化工应用,2016,35(6):6-9. doi: 10.3969/j.issn.1673-5285.2016.06.002

    QI Ben, DU Bin, GAO Xueqing, et al. Research progress of latex for oil well cement[J]. Petrochemical Industry Application, 2016, 35(6):6-9. doi: 10.3969/j.issn.1673-5285.2016.06.002
    [17] 祝国伟, 谢荣斌, 刘伟, 等. 阴离子型丁苯胶乳粉的合成及其在油井水泥中的应用[J]. 合成化学,2023,31(10):798-805.

    ZHU Guowei, XIE Rongbin, LIU Wei, et al. Synthesis of anionic styrene butadiene latex powder and its application in oil well cement[J]. Chinese Journal of Synthetic Chemistry, 2023, 31(10):798-805.
    [18] 徐大伟,汪晓静,徐春虎,等. 且深1井盐层尾管超高温高密度固井水泥浆技术[J]. 钻井液与完井液,2024,41(5):622-629.

    XU Dawei, WANG Xiaojing, XU Chunhu, et al. Extra-high temperature high density cement slurry for cementing liners through salt formation in well Qieshen-1[J]. Drilling Fluid & Completion Fluid, 2024, 41(5):622-629.
    [19] 李晶辉, 赵文杰. 可再分散乳胶粉的研究进展[J]. 硅酸盐通报,2016,35(12):4038-4043.

    LI Jinghui, ZHAO Wenjie. Research development of dispersible latex powder[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12):4038-4043.
    [20] YE J J, WANG X C, LI X B, et al. Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions[J]. Journal of Dispersion Science and Technology, 2018, 39(11):1655-1663. doi: 10.1080/01932691.2018.1461639
    [21] WEI Y N, LIU Y X. Study of dispersion mechanisms of modified SiC powder: electrostatic repulsion and steric hindrance mechanism[J]. New Journal of Chemistry, 2019, 43(35):14036-14044. doi: 10.1039/C9NJ02131K
    [22] 闫睿昶,徐明,虞海法,等. 巴彦河套盆地复杂储层固井技术[J]. 钻井液与完井液,2023,40(1):82-88.

    YAN Ruichang, XU Ming, YU Haifa, et al. Well cementing technology for complex reservoirs in the Bayan Hetao basin[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):82-88.
    [23] GALLARDO V, MORALES M E, RUIZ M A, et al. An experimental investigation of the stability of ethylcellulose latex: correlation between zeta potential and sedimentation[J]. European Journal of Pharmaceutical Sciences, 2005, 26(2):170-175. doi: 10.1016/j.ejps.2005.05.008
    [24] PEI Y B, ZHANG X Y, JIANG Y L, et al. Redispersibility of acrylate polymer powder and stability of its reconstituted latex[J]. Journal of Dispersion Science and Technology, 2011, 32(9):1279-1284. doi: 10.1080/01932691.2010.505799
    [25] 田野,马春旭,赵军,等. 防漏堵漏低密度水泥浆技术[J]. 钻井液与完井液,2024,41(4):515-521.

    TIAN Ye, MA Chunxu, ZHAO Jun, et al. Study on a low density cement slurry capable of preventing and stopping mud losses and the use of the slurry[J]. Drilling Fluid & Completion Fluid, 2024, 41(4):515-521.
    [26] PEI Y B, REN X L, XIE D L, et al. Stabilization mechanism of the reconstituted emulsion of polyacrylate redispersible powder[J]. Chemical Engineering Communications, 2015, 202(9):1245-1250. doi: 10.1080/00986445.2014.919450
    [27] CHEN Q, CHEN Z F, LI C D, et al. Effect of dispersants on dispersion of glassfiber suspensions[J]. Asian Journal of Chemistry, 2014, 26(16):5100-5104. doi: 10.14233/ajchem.2014.16339
    [28] WANG B M, JIANG R S, SONG W Z, et al. Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique[J]. Russian Journal of Physical Chemistry a, 2017, 91(8):1517-1526. doi: 10.1134/S0036024417080040
    [29] 余宗学, 梁灵, 何毅, 等. 新型抗温抗酸含磺酸基咪唑啉缓蚀剂的合成及其性能[J]. 材料保护,2015,48(5):27-30,38.

    YU Zongxue, LIANG Ling, HE Yi, et al. Synthesis of a novel corrosion inhibitor with good endurance against high temperature and acid and evaluation of its inhibition performance for steel[J]. Materials Protection, 2015, 48(5):27-30,38.
    [30] 刘自茹, 肖尧, 陈旭, 等. 盐穴储能库固井工艺[J]. 钻井液与完井液,2024,41(3):374-382. doi: 10.12358/j.issn.1001-5620.2024.03.013

    LIU Ziru, XIAO Yao, CHEN Xu, et al. Well cementing technology for salt cavern energy storage[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):374-382. doi: 10.12358/j.issn.1001-5620.2024.03.013
    [31] 张新贵, 孔新民, 王美洁, 等. 固井水泥浆胶乳的合成及性能评价[J]. 长江大学学报(自科版),2016,13(23):49-53.

    ZHANG Xingui, KONG Xinmin, WANG Meijie, et al. Synthesis and performance evaluation for latex for cement slurry[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(23):49-53.
    [32] 李立昌,曹洪昌,高阳,等. 华北储气库韧性水泥浆及增韧机理[J]. 钻井液与完井液,2025,42(2):239-246.

    LI Lichang, CAO Hongchang, GAO Yang, et al. The toughening mechanisms of tough cement slurries for the underground gas storage in north China[J]. Drilling Fluid & Completion Fluid, 2025, 42(2):239-246.
    [33] 冯瑞阁,李玮,孟仁洲,等. 星探1井韧性防窜水泥浆技术[J]. 钻井液与完井液,2023,40(5):658-664.

    FENG Ruige, LI Wei, MENG Renzhou, et al. Study and application of a tough anti-channeling cement slurry for well Xingtan-1[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):658-664.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  9
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-10
  • 修回日期:  2025-05-08
  • 刊出日期:  2025-07-31

目录

    /

    返回文章
    返回