留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水基与油基钻井液的水平井环空岩屑浓度对比

孙嘉林 张健伟 范森 柴宜芳 陈灿

孙嘉林,张健伟,范森,等. 水基与油基钻井液的水平井环空岩屑浓度对比[J]. 钻井液与完井液,2025,42(4):516-522 doi: 10.12358/j.issn.1001-5620.2025.04.011
引用本文: 孙嘉林,张健伟,范森,等. 水基与油基钻井液的水平井环空岩屑浓度对比[J]. 钻井液与完井液,2025,42(4):516-522 doi: 10.12358/j.issn.1001-5620.2025.04.011
SUN Jialin, ZHANG Jianwei, FAN Sen, et al.Comparison of cuttings concentration in annular spaces of horizontal wells between water- and oil-based drilling fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(4):516-522 doi: 10.12358/j.issn.1001-5620.2025.04.011
Citation: SUN Jialin, ZHANG Jianwei, FAN Sen, et al.Comparison of cuttings concentration in annular spaces of horizontal wells between water- and oil-based drilling fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(4):516-522 doi: 10.12358/j.issn.1001-5620.2025.04.011

水基与油基钻井液的水平井环空岩屑浓度对比

doi: 10.12358/j.issn.1001-5620.2025.04.011
基金项目: 黑龙江省自然科学基金资助项目“环空未封固段钻井液老化机理及密封性能评价”(LH2022E026)。
详细信息
    作者简介:

    孙嘉林,在读硕士研究生,研究方向为水平井岩屑运移规律。E-mail:13981112380@163.com

    通讯作者:

    范森,副教授,研究方向为钻井工程难题和油田化学。E-mail:fs406@nepu.edu.cn

  • 中图分类号: TE253

Comparison of Cuttings Concentration in Annular Spaces of Horizontal Wells Between Water- and Oil-Based Drilling Fluids

  • 摘要: 目前多数学者研究岩屑运移问题都是在水基钻井液条件下进行的,但随着油基钻井液的应用增多,探讨水基与油基钻井液在岩屑运移上的差异性是十分必要的。因此通过CFD(计算流体力学)建立了三维井眼模型探讨水基与油基钻井液在岩屑运移上的不同,并通过与室内实验结果对比,验证了建立的CFD模型是可靠的。通过CFD数值模拟得出,在偏心度或钻井液入口速度相同的条件下油基钻井液的岩屑床高度低于水基钻井液的岩屑床高度;并且在岩屑粒径为2~4 mm、转速小于80 r/min的情况下,油基钻井液的环空岩屑浓度明显低于水基钻井液的环空岩屑浓度。以往研究指出岩屑颗粒越大越难运移出井筒,但该研究发现2~3 mm的岩屑颗粒相较3~4 mm的岩屑颗粒更难运移出井筒,并不是岩屑粒径越大越难运移出井筒。尽管前人研究表明,偏心度越大岩屑浓度越大,但该研究发现,偏心度低于0.3时,水平井环空岩屑浓度变化不大,但当偏心度超过0.3时,岩屑浓度则逐渐增加。基于上述研究,该结果为水平井的钻井参数优选提供了更好的理解和指导。

     

  • 图  1  室内实验与CFD模型结果对比

    图  2  影响因素与岩屑浓度相关性分析

    图  3  岩屑浓度随钻杆偏心度变化曲线

    图  4  不同钻杆偏心度下岩屑体积分布云图

    图  5  岩屑浓度随岩屑粒径变化曲线

    图  6  不同岩屑粒径下岩屑体积分布云图

    图  7  岩屑浓度随钻杆转速变化曲线

    图  8  不同钻杆转速下岩屑体积分布与岩屑速度云图

    图  9  岩屑浓度随钻井液入口速度变化曲线

    图  10  不同钻井液入口速度下岩屑运移距离

    表  1  CFD模拟仿真参数

    项目参数值
    岩屑密度/(g·cm−3)2.6
    钻井液密度/(g·cm−3)1.26(油基)、1.18(水基)
    钻杆偏心度0.1、0.2、0.3、0.4、0.5
    岩屑粒径/mm1、2、3、4、5
    钻杆转速/(r·min−1)20、40、60、80、100
    钻井液入口流速/(m·s−1)1.00、1.25、1.50
    下载: 导出CSV
  • [1] 邓建清, 黄胜, 倪芃芃, 等. 水平定向钻进中钻屑运移研究综述[J]. 地下空间与工程学报,2022,18(z2):714-728.

    DENG Jianqing, HUANG Sheng, NI Pengpeng, et al. Cuttings transportation in horizontal directional drilling: a review[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(z2):714-728.
    [2] SAYINDLA S, LUND B, YTREHUS J D, et al. Hole-cleaning performance comparison of oil-based and water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2017, 159:49-57. doi: 10.1016/j.petrol.2017.08.069
    [3] MOHAMMADZADEH K, HASHEMABADI S H, AKBARI S. CFD simulation of viscosity modifier effect on cutting transport by oil based drilling fluid in wellbore[J]. Journal of Natural Gas Science and Engineering, 2016, 29:355-364. doi: 10.1016/j.jngse.2015.11.011
    [4] ZAKERI A, ALIZADEH BEHJANI M, HASSANPOUR A. Fully coupled CFD–DEM simulation of oil well hole cleaning: effect of mud hydrodynamics on cuttings transport[J]. Processes, 2024, 12(4):784. doi: 10.3390/pr12040784
    [5] HUQUE M M, BUTT S, ZENDEHBOUDI S, et al. Systematic sensitivity analysis of cuttings transport in drilling operation using computational fluid dynamics approach[J]. Journal of Natural Gas Science and Engineering, 2020, 81:103386. doi: 10.1016/j.jngse.2020.103386
    [6] BUSCH A, JOHANSEN S T. Cuttings transport: on the effect of drill pipe rotation and lateral motion on the cuttings bed[J]. Journal of Petroleum Science and Engineering, 2020, 191:107136. doi: 10.1016/j.petrol.2020.107136
    [7] EPELLE E I, OBANDE W, OKOLIE J A. CFD modelling and simulation of drill cuttings transport efficiency in annular bends: effect of particle size polydispersity[J]. Journal of Petroleum Science and Engineering, 2022, 208:109795. doi: 10.1016/j.petrol.2021.109795
    [8] OFEI T N. Effect of yield power law fluid rheological properties on cuttings transport in eccentric horizontal narrow annulus[J]. Journal of Fluids, 2016, 2016. DOI: 10.1155/2016/4931426.
    [9] GHASEMIKAFRUDI E, HASHEMABADI S H. Numerical study on cuttings transport in vertical wells with eccentric drillpipe[J]. Journal of Petroleum Science and Engineering, 2016, 140:85-96. doi: 10.1016/j.petrol.2015.12.026
    [10] 胡金帅, 张光伟, 李峻岭, 等. 基于CFD-DEM耦合模型的岩屑运移数值模拟分析[J]. 断块油气田,2022,29(4):561-566.

    HU Jinshuai, ZHANG Guangwei, LI Junling, et al. Numerical simulation of cuttings migration based on CFD-DEM coupling model[J]. Fault-Block Oil and Gas Field, 2022, 29(4):561-566.
    [11] 张鑫鑫, 毛纯芝, 信伟卫, 等. 基于欧拉双流体模型的微小井眼环空岩屑运移数值模拟研究[J]. 中南大学学报(自然科学版),2023,54(11):4413-4423.

    ZHANG Xinxin, MAO Chunzhi, XIN Weiwei, et al. Numerical simulation research of cuttings transport in microhole annulus based on Eulerian two-fluid model[J]. Journal of Central South University (Science and Technology), 2023, 54(11):4413-4423.
    [12] 王庆, 张佳伟, 陶亮, 等. 古龙页岩油水平井扩径段岩屑运移数值模拟研究[J]. 石油机械,2023,51(12):44-51.

    WANG Qing, ZHANG Jiawei, TAO Liang, et al. Numerical simulation on cuttings migration in hole enlargement section of horizontal well in Gulong shale oil reservoir[J]. China Petroleum Machinery, 2023, 51(12):44-51.
    [13] 武治强, 幸雪松, 庞照宇, 等. 超深井长裸眼段岩屑运移规律及特征分析[J]. 科学技术与工程,2023,23(11):4596-4606. doi: 10.12404/j.issn.1671-1815.2023.23.11.04596

    WU Zhiqiang, XING Xuesong, PANG Zhaoyu, et al. Analysis of cuttings transport law and characteristics in long open hole section of ultra-deep well[J]. Science Technology and Engineering, 2023, 23(11):4596-4606. doi: 10.12404/j.issn.1671-1815.2023.23.11.04596
    [14] 孙晓峰, 姚笛, 孙士慧, 等. 基于漂移流动模型的水平井岩屑床高度瞬态计算新方法[J]. 天然气工业,2022,42(5):85-92. doi: 10.3787/j.issn.1000-0976.2022.05.009

    SUN Xiaofeng, YAO Di, SUN Shihui, et al. A new transient calculation method of cuttings bed thickness based on drift flow model[J]. Natural Gas Industry, 2022, 42(5):85-92. doi: 10.3787/j.issn.1000-0976.2022.05.009
    [15] AL-SHARGABI M, DAVOODI S, WOOD D A, et al. Hole-cleaning performance in non-vertical wellbores: a review of influences, models, drilling fluid types, and real-time applications[J]. Geoenergy Science and Engineering, 2024, 233:212551. doi: 10.1016/j.geoen.2023.212551
    [16] AL-AZANI K, ELKATATNY S, ABDULRAHEEM A, et al. Prediction of cutting concentration in horizontal and deviated wells using support vector machine[C]//Paper presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Dammam, Saudi Arabia, 2018: SPE-192193-MS.
    [17] 陈锟, 夏成宇, 冯超, 等. 页岩气水平井岩屑沉降规律仿真[J]. 石油机械,2021,49(11):1-9.

    CHEN Kun, XIA Chengyu, FENG Chao, et al. Simulation of cuttings settling in horizontal shale gas wells[J]. China Petroleum Machinery, 2021, 49(11):1-9.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-12
  • 修回日期:  2025-02-23
  • 刊出日期:  2025-07-31

目录

    /

    返回文章
    返回