Research and Application of White Oil-Based Drilling Fluid Technology for Long Horizontal Wells in Western Sichuan
-
摘要: 为解决川西海相长水平井钻探过程中的环空憋堵、井壁失稳技术难题,分析了该地层地质特征,并通过实验研究了其井壁失稳机理,研究表明川西海相地层最小主应力方向井壁失稳风险要高于最大主应力方向,储层岩石矿物呈现硬脆性,地层破碎,微裂缝发育,夹层胶结性差,长水平井段易发生岩屑沉积,引起环空憋堵,裂缝受压力激动进一步拓展,导致井壁失稳。在此基础上,研制了抗高温提切剂SMRS-1,研选了乳化剂和纳微米封堵剂SMNR-2等关键材料,构建了抗高温长效稳定白油基钻井液体系,该体系经160℃滚动老化7 d后,动塑比不小于0.20 Pa/mPa·s,高温高压滤失量(160℃)小于4.0 mL,破乳电压大于600 V,显示出良好的高温长效稳定性。该钻井液在PZ5-3井成功应用,解决了川西海相长水平井环空憋堵、井壁失稳难题。Abstract: In order to address the challenges of annular blockage and borehole instability during the drilling process of long horizontal wells in western Sichuan, this study analyzed the geological characteristics of the formation. Experimental research was conducted to understand the mechanism behind borehole instability. The findings revealed that in sea-related geological formations in Western Sichuan Basin, the risk of borehole instability is higher in the direction of minimum principal stress compared to that of maximum principal stress. The reservoir rock exhibits hard brittleness, fractured formations, developed microfractures, poor interlayer cementation, and a tendency for drilling cuttings deposition leading to annular blockage. Under pressure excitation, fractures further expand causing borehole instability. Based on these findings, flow type stabilizer SMRS-1 was developed. Emulsifying agents and nano-micron sealing agent SMNR-2 were carefully selected to construct a high-temperature long-term stable white oil-based drilling fluid system. After 7 days of rolling aging at 160℃, this system exhibited good high-temperature long-term stability with a dynamic viscosity ratio ≥0.20 and a high-temperature high-pressure filtration loss <4.0 mL at 160℃ along with breakdown voltage >600 V. The successful application of this drilling fluid in well PZ5-3 effectively resolved issues related to annular blockage and borehole instability encountered during long horizontal well drilling operations within western Sichuan.
-
表 1 川西气田雷口坡组岩样及掉块矿物组分分析 %
样品号 石英 方解石 白云石 1 0.8 35.6 63.6 2 0.2 30.5 69.3 3 0.5 14.8 84.7 4 0 80.8 19.2 5 0 22.4 77.6 6 0.6 3.2 96.2 平均 0.35 31.2 68.5 注:黏度矿物含量为0。 表 2 基浆中加入不同类型提切剂的提切性能
配方 PV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sYP提高率/
%动塑比
提高率/%空白 20 2.5 0.125 1%提切剂1 20 3.0 0.150 40 20.0 1%提切剂2 26 5.5 0.211 120 68.8 1%提切剂3 20 3.0 0.150 20 20.0 1%提切剂4 24 4.5 0.187 80 49.6 1%SMRS-1 25 6.5 0.260 160 108.0 注:老化条件180℃×16 h。 表 3 封堵材料对钻井液性能影响
配方 AV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sES/
VFLHTHP/
mL基浆 43.0 35 8.0 0.23 832 14.2 1# 39.0 30 9.0 0.30 777 7.8 2# 41.0 33 8.0 0.24 702 8.2 3# 39.5 31 8.5 0.27 721 5.4 4# 42.0 32 10.0 0.31 734 5.2 5# 42.5 32 10.5 0.33 790 2.0 表 4 钻井液长期老化性能
ρ/
g/cm3老化
条件ES/
VPV/
mPa·sYP/
PaGel/
Pa/PaYP/PV/
Pa/mPa·sFLHTHP/
mL1.40 老化前 967 29 10.0 4.0/5.0 0.34 160℃、1 d 1170 54 18.5 7.0/8.0 0.32 3.0 160℃、3 d 804 50 16.0 7.0/8.0 0.23 3.0 160℃、5 d 756 41 9.5 2.5/3.5 0.23 3.2 160℃、7 d 653 35 8.0 2.0/3.0 0.22 3.4 1.50 老化前 1281 32 10.0 5.0/4.0 0.31 160℃、1 d 1456 57 16.0 8.0/9.0 0.28 2.8 160℃、3 d 936 45 12.0 2.5/3.5 0.27 3.4 160℃、5 d 716 31 8.0 2.0/3.0 0.26 3.4 160℃、7 d 653 28 6.0 2.0/3.0 0.21 3.6 表 5 油基钻井液PPA封堵实验
配方 老化
条件50 μm砂盘 10 μm砂盘 瞬时滤失/
mLVPPA/
mL瞬时滤失/
mLVPPA/
mL基浆 160℃、1 d 56 110 22 60 油基
钻井液160℃、1 d 4.2 6.4 0 1.6 160℃、3 d 5.8 7.0 1.8 2.4 160℃、7 d 6.6 7.2 2.6 3.0 表 6 现场钻井液在160℃老化不同时间后的性能
t老化/
dES/
VGel/
Pa/PaAV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sFLHTHP/
mL沉降
系数0 930 4.5/8.0 58.5 42 16.5 0.39 2.0 0.515 1 924 5.0/6.0 61.0 47 14.0 0.30 2.0 0.514 3 710 5.0/6.0 52.0 42 10.0 0.24 2.2 0.518 5 683 4.5/5.5 49.0 40 9.0 0.23 2.4 0.515 7 662 3.0/4.0. 46.0 38 8.0 0.21 2.6 0.520 -
[1] 胡大梁, 欧彪, 何龙, 等. 川西海相超深大斜度井井身结构优化及钻井配套技术[J]. 石油钻探技术,2020,48(3):22-28.HU Daliang, OU Biao, HE Long, et al. Casing program optimization and drilling matching technologies for Marine Ultra-Deep highly deviated wells in western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3):22-28. [2] 徐康, 宫晗凝, 蒋小琼, 等. 川西雷口坡组四段上亚段储层特征及成因机理[J]. 西安石油大学学报(自然科学版),2023,38(6):1-14,62.XU Kang, GONG Hanning, JIANG Xiaoqiong, et al. Reservoir characteristics and genetic mechanism of upper section of the fourth member of Leikoupo formation in western Sichuan[J]. Journal of Xi'an Shiyou University(Natural Science), 2023, 38(6):1-14,62. [3] 孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版),2023,47(5):76-89.SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5):76-89. [4] 高书阳, 汤志川, 宋碧涛, 等. 川西断缝体储层封堵固壁钻井液技术[J]. 钻井液与完井液,2023,40(5):556-562. doi: 10.12358/j.issn.1001-5620.2023.05.002GAO Shuyang, TANG Zhichuan, SONG Bitao, et al. Drilling fluid technology for plugging and strengthening the borehole wall of wells penetrating the faulted fractured reservoirs in West Sichuan[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):556-562. doi: 10.12358/j.issn.1001-5620.2023.05.002 [5] 孙凯, 冉茂林, 李鑫. 成膜防塌钻井液技术研究与应用[J]. 钻采工艺,2021,44(4):104-109. doi: 10.3969/J.ISSN.1006-768X.2021.04.24SUN Kai, RAN Maolin, LI Xin. Research and application of film-forming anti-collapse drilling fluid system[J]. Drilling & Production Technology, 2021, 44(4):104-109. doi: 10.3969/J.ISSN.1006-768X.2021.04.24 [6] 王星媛, 陆灯云, 袁志平. 川西地区油基钻井液井壁强化技术[J]. 石油钻探技术,2021,49(1):34-40.WANG Xingyuan, LU Dengyun, YUAN Zhiping. Borehole strengthening technology with Oil-Based drilling fluid in the western Sichuan basin[J]. Petroleum Drilling Techniques, 2021, 49(1):34-40. [7] 杨斌. 油基钻井液稳黏提切剂的研制及应用[J]. 钻采工艺,2019,42(1):80-82.YANG Bin. Development of rheology modifier for oil based drilling fluid[J]. Drilling & Production Technology, 2019, 42(1):80-82. [8] 罗春芝, 章楚君, 王怡迪, 等. 聚醚脂肪酸类油基钻井液提切剂的研制与应用[J]. 钻井液与完井液,2023,40(3):303-312.LUO Chunzhi, ZHANG Chujun, WANG Yidi, et al. Synthesis and application of polyether fatty acid rheology modifier for oil-based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):303-312. [9] 倪晓骁, 史赫, 程荣超, 等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液,2022,39(2):133-138.NI Xiaoxiao, SHI He, CHENG Rongchao, et al. A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):133-138. [10] 龙怀远, 陈武, 刘罡, 等. 高温高压油基钻井液乳化稳定性评价装置与方法[J]. 钻井液与完井液,2021,38(6):738-742.LONG Huaiyuan, CHEN Wu, LIU Gang, et al. Research on evaluation device and method of emulsification stability of high temperature and high pressure oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):738-742. [11] 张继尹, 肖国益, 李玉飞, 等. 金马-鸭子河构造带超深井钻井技术难点及对策[J]. 钻采工艺,2017,40(4):113-115. doi: 10.3969/J.ISSN.1006-768X.2017.04.37ZHANG Jiyin, XIAO Guoyi, LI Yufei, et al. Technical difficulties and countermeasures of ultra-deep well drilling in Jinma-Yazihe structural zone[J]. Drilling & Production Technology, 2017, 40(4):113-115. doi: 10.3969/J.ISSN.1006-768X.2017.04.37 [12] 谢强, 李皋, 彭红利, 等. 川西彭州地区雷四段储集层构造裂缝特征及定量预测[J]. 新疆石油地质,2022,43(5):519-525.XIE Qiang, LI Gao, PENG Hongli, et al. Characteristics and quantitative prediction of structural fractures in Lei4 member reservoir in Pengzhou area, western Sichuan basin[J]. Xinjiang Petroleum Geology, 2022, 43(5):519-525. [13] 胥豪, 唐洪林, 王华平, 等. 彭州海相超深水平井钻井提速关键技术实践[J]. 钻采工艺,2022,45(5):16-21.XU Hao, TANG Honglin, WANG Huaping, et al. Key techniques practice of drilling speed improving in Pengzhou marine ultra-deep horizontal well[J]. Drilling & Production Technology, 2022, 45(5):16-21. [14] 欧彪, 吴雪锋, 彭红利, 等. 川西彭州地区雷四段地层区域应力场分布规律及应用[J]. 科学技术与工程,2023,23(31):13325-13331. doi: 10.12404/j.issn.1671-1815.2023.23.31.13325OU Biao, WU Xuefeng, PENG Hongli, et al. Distribution law of regional stress field in Lei 4th member in Pengzhou area, western Sichuan[J]. Science Technology and Engineering, 2023, 23(31):13325-13331. doi: 10.12404/j.issn.1671-1815.2023.23.31.13325 -