A Highly Inhibitive Low Activity Brine-Based Drilling Fluid
-
摘要: 卤水基钻井液体系作为一种新的钻井液体系,在替代油基及传统水基钻井液方面具有较大的价值。针对吐哈油田二叠系目的层井壁失稳严重、储层保护难度大的现状,以氯化物型卤水为分散基液开展钻井液体系研究,通过优选高效处理剂,形成了一套低活度低固相强抑制性的卤水基钻井液体系。该体系组成简单,抑制性强,室内研究表明,该体系具有较好的抗温性及抗污染性,对钢片及橡胶等材料的腐蚀也满足测试标准要求。该体系在吐哈油田准噶尔盆地奇探1块成功进行了应用,目的层段平均井径扩大率为3.44%,钻进时无复杂事故发生,表明低活度低固相强抑制性的卤水基钻井液体系能满足二叠系盆地的钻井要求,氯化物型卤水钻井液体系试验在国内尚属首次,具有进一步优化推广的价值。Abstract: As a new type of drilling fluid, bring-based drilling fluid manifests its significance in replacing oil-based and conventional water-based drilling fluids. To deal with the serious borehole wall collapse and reservoir protection problems encountered in drilling the Permian system reservoir in Tuha oilfield, a chloride brine was chosen as the base fluid for drilling fluid development. By selecting high efficiency drilling fluid additives, a highly inhibitive low solids low activity brine-based drilling fluid was formulated. This drilling fluid has simple composition and strong inhibitive capacity. Laboratory researches show that this drilling fluid has good high temperature stability and contamination resistance, and results of corrosion test with steel plate and rubber satisfy the standard requirements. This drilling fluid was successfully used in the Qitan-1 block in Tuha oilfield, the average percent hole enlargement of the target zone sections was 3.44%, and no downhole troubles were encountered during drilling, demonstrating that the highly inhibitive low solids low activity brine-based drilling fluid can satisfy the requirements of drilling in the Permian basin. The application of the chloride brine-based drilling fluid is the first in China, and is worth further optimization and promotion.
-
Key words:
- Brine-based drilling fluid /
- Low activity /
- Plugging and anti-sloughing /
- Qitan-1 block /
- Permian basin
-
表 1 在基浆中添加抑制剂0.3%C-DBY的抗温性能
实验条件 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/Pa老化前 38.0 31 7.0 1.0/1.5 80℃、24 h 33.5 28 5.5 0.5/1.0 100℃、24 h 23.0 18 5.0 0.5/1.0 120℃、24 h 22.0 19 3.0 0.5/0.5 注:基浆:400 mL清水+40%CaCl2。 表 2 在基浆中加入3%不同降滤失剂的性能
降滤失剂 AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mLLH-FRFP 66 45 21 4.5 13 D-Drill-400 78 58 20 5.0 42 AJTL-1 93 58 35 7.5 40 SP-9 89 72 17 6.5 20 注:基浆:清水+40%CaCl2+0.3%C-DBY。 表 3 封堵剂粒度测定数据
材料名称 D10/μm D50/μm D90/μm 平均粒径/μm 超细碳酸钙 1.60 7.46 18.07 8.04 DRGF-1 3.61 21.05 61.84 27.96 DRGF-2 3.04 16.70 47.91 21.67 TC-6 3.61 20.16 82.35 34.30 表 4 封堵剂粒度测定数据
沥青材料 AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mLDRGF-1 88 76 12 4 8.6 DRGF-2 60 56 4 21 21.4 TC-6 38 35 3 63 86.0 注:基浆:清水+40%CaCl2+3%LH-FRFP+5%超细碳酸钙+0.3%C-DBY+5%沥青类封堵剂+重晶石。 表 5 体系流变性测定数据
实验
条件AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL老化前 70.0 54 16.0 1.5/4.0 1.4 80℃、24 h 87.0 74 13.0 1.0/1.5 1.5 12 100℃、24 h 83.0 65 18.0 1.0/1.5 2.4 16 120℃、24 h 61.5 49 12.5 1.0/1.5 2.4 24 表 6 不同钻井液体系抑制性测定数据
样品 页岩膨胀量/mm 膨胀率/% 清水 3.69 33.0 复合盐钻井液 1.10 10.0 卤水钻井液 0.85 4.2 柴油基钻井液 0.12 2.6 表 7 在基浆中加入不同污染物的性能
污染物 实验条件 PV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL2%膨润土 常温 34 15 2.5/3.5 2.0 6.0 2%膨润土 120℃、16 h 30 10 0.5/1.5 1.7 3.0 4%膨润土 常温 34 18 3.0/4.0 2.0 2.4 4%膨润土 120℃、16 h 40 14 1.5/2.5 2.0 2.4 5%NaCl 常温 28 11 2.0/2.5 2.0 6.0 5%NaCl 120℃、16 h 21 13 2.5/3.5 1.5 3.0 10%NaCl 常温 31 13 3.0/4.0 2.0 1.6 10%NaCl 120℃、16 h 30 15 4.0/5.0 1.0 2.0 表 8 体系对N80钢片的腐蚀速率测定数据
CaCl2溶液/% 钢片编号 长度/cm 宽度/cm 高度/cm 孔径/cm 表面积/cm2 m腐蚀前/g m腐蚀后/g t腐蚀/d 腐蚀速率/(mm/a) 10 815 7.600 1.298 0.146 0.796 22.3278 10.4130 10.3184 7 0.281 43 20 812 7.590 1.298 0.146 0.796 22.2989 10.4860 10.4105 7 0.224 90 40 819 7.590 1.298 0.148 0.796 22.3345 10.5400 10.5112 7 0.085 65 表 9 体系对橡胶材料的腐蚀速率测定数据
溶液
浓度试样 m腐蚀前/
gm7 d/
g质量
变化率7 d/%质量平均
变化率7 d/%40% DZ-3 1 1.5247 1.4955 1.92 1.27 2 1.4973 1.4791 1.22 3 1.5155 1.5053 0.67 DZ-11 1 1.6356 1.5823 3.26 3.17 2 1.7206 1.6717 2.84 3 1.6762 1.6193 3.39 -
[1] 王晓军, 余婧, 孙云超, 等. 适用于连续管钻井的无固相卤水钻井液体系[J]. 石油勘探与开发,2018,45(3):507-512. doi: 10.1016/S1876-3804(18)30056-9WANG Xiaojun, YU Jing, SUN Yunchao, et al. A solids-free brine drilling fluid system for coiled tubing drilling[J]. Petroleum Exploration and Development, 2018, 45(3):507-512. doi: 10.1016/S1876-3804(18)30056-9 [2] 王正浩, 申立, 宋仲科. 卤水钻井液在青海钾盐矿层钻探中的应用研究[J]. 中国煤炭地质,2015(9):55-58.WANG Zhenghao, SHEN Li, SONG Zhongke. Applied research of salt brine drilling fluid in Qinghai sylvinite strata drilling[J]. Coal Geology of China, 2015(9):55-58. [3] 周宏宇, 刘向甫, 张家义, 等. 继“用卤水做钻井液和洗井液的设想”的研究应用进展[J]. 中国石油和化工标准与质量,2013,33(21):80. [4] 吴爽. 辽河油田无固相强抑制水基钻井液技术[J]. 石油钻探技术,2017,45(6):42-48.WU Shuang. Solid-Free and strongly inhibitive Water-Based drilling fluid in the Liaohe oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6):42-48. [5] 陈旋, 苟红光, 张有锦, 等. 准噶尔盆地吉木萨尔凹陷北部芦草沟组高产页岩油特征及地质意义——以奇探1井为例[J]. 天然气地球科学,2025,36(1):1-12.CHEN Xuan, GOU Hongguang, ZHANG Youjin, et al. Characteristics and geological significance of high-yield shale oil from the Lucaogou formation in the northern Jimsar sag of Junggar basin: a case study of well Qitan 1[J]. Natural Gas Geoscience, 2025, 36(1):1-12. [6] 付红卫, 孙乐臻, 汪安富, 等. 一种卤水钻井液及其制备方法: CN202311628495.8[P]. 2023-12-01. [7] 宋永涛, 余维初, 樊平天, 等. 一种卤水基钻井液及其配制方法: CN202111418035.3[P]. 2021-11-26. [8] 陈建光, 胡成亮, 何丕祥, 等. 一种改性卤水修井液及其制备方法: CN201710668984.4[P]. 2017-08-08. [9] 赵岩, 刘现川, 刘永亮, 等. 一种高矿化度水基钻井液及其制备方法: CN202011125329.2[P]. 2020-10-20. [10] 王天成, 宫俊林. 一种以卤水为基液的饱和盐水泥浆及其制备方法: CN201210060525.5[P]. 2012-03-09. [11] 卢甲举, 梁艳丽, 房卫, 等. CaCl2钻井液: CN00123780.2[P]. 2000-09-06. [12] 王倩, 周英操, 唐玉林, 等. 泥页岩井壁稳定影响因素分析[J]. 岩石力学与工程学报,2012,31(1):171-179.WANG Qian, ZHOU Yingcao, TANG Yulin, et al. Analysis of effect factor in shale wellbore stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1):171-179. [13] 孙金声, 许成元, 康毅力, 等. 页岩储层钻井液-压裂液复合损害机理及保护对策[J]. 石油勘探与开发,2024,51(2):380-388. doi: 10.1016/S1876-3804(24)60030-3SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs[J]. Petroleum Exploration and Development, 2024, 51(2):380-388. doi: 10.1016/S1876-3804(24)60030-3 [14] 梁凯. 层理性页岩水平井井眼坍塌失稳机理研究[D]. 大庆: 东北石油大学, 2023.LIANG Kai. Study on Mechanism of Wellbore Collapse and Instability in Horizontal Well of Layered Shale[D]. Daqing: Northeast Petroleum University, 2023. [15] 罗鸣, 高德利, 黄洪林, 等. 钻井液对页岩力学特性及井壁稳定性的影响[J]. 石油钻采工艺,2022,44(6):693-700.LUO Ming, GAO Deli, HUANG Honglin, et al. Effects of drilling fluids on shale mechanical properties and wellbore stability[J]. Oil Drilling & Production Technology, 2022, 44(6):693-700. [16] 李雨洋. 钻井液封堵性能对泥页岩井壁稳定的影响研究[J]. 石化技术,2023,30(5):148-150.LI Yuyang. Study influence of drilling fluid plugging performance on shale wall stability[J]. Petrochemical Industry Technology, 2023, 30(5):148-150. [17] 张雅楠. 钻井液封堵性能对硬脆性泥页岩井壁稳定的影响[D]. 北京: 中国石油大学(北京), 2017.ZHANG Yanan. The Impact of drilling fluid plugging performance on well bore stability of hard brittle shale[D]. Beijing: China University of Petroleum(Beijing), 2017. [18] 黄贤斌, 张学皓, 袁侦航, 等. 复杂泥页岩地层井壁稳定钻井液材料研究现状[J]. 新疆石油天然气,2024,20(3):46-53.HUANG Xianbin, ZHANG Xuehao, YUAN Zhenhang, et al. Research status of wellbore stabilization drilling fluid materials in complex shale formations[J]. Xinjiang Oil & Gas, 2024, 20(3):46-53. [19] 黄宁, 孙金声, 刘敬平, 等. 水基钻井液封堵理论和材料研究现状及发展趋势[J]. 化工进展,2025,44(1):367-378.HUANG Ning, SUN Jinsheng, LIU Jingping, et al. Research status and development trend of plugging theory and materials of water-based drilling fluid[J]. Chemical Industry and Engineering Progress,2025,44(1):367-378. -