留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部地层CO2对抗高温降滤失剂性能弱化规律及机理分析

张坤 李阳 穆剑雷 李永龙 石亚华 蒲磊 谢凌志

张坤,李阳,穆剑雷,等. 深部地层CO2对抗高温降滤失剂性能弱化规律及机理分析[J]. 钻井液与完井液,2025,42(4):494-502 doi: 10.12358/j.issn.1001-5620.2025.04.008
引用本文: 张坤,李阳,穆剑雷,等. 深部地层CO2对抗高温降滤失剂性能弱化规律及机理分析[J]. 钻井液与完井液,2025,42(4):494-502 doi: 10.12358/j.issn.1001-5620.2025.04.008
ZHANG Kun, LI Yang, MU Jianlei, et al.Performance deterioration of high temperature filtration control agents by CO2 in deep formations and mechanism analysis thereof[J]. Drilling Fluid & Completion Fluid,2025, 42(4):494-502 doi: 10.12358/j.issn.1001-5620.2025.04.008
Citation: ZHANG Kun, LI Yang, MU Jianlei, et al.Performance deterioration of high temperature filtration control agents by CO2 in deep formations and mechanism analysis thereof[J]. Drilling Fluid & Completion Fluid,2025, 42(4):494-502 doi: 10.12358/j.issn.1001-5620.2025.04.008

深部地层CO2对抗高温降滤失剂性能弱化规律及机理分析

doi: 10.12358/j.issn.1001-5620.2025.04.008
详细信息
    作者简介:

    张坤,高级工程师,1984年生,现在从事钻井液技术工作。电话 (022)25979174;E-mail:zhangkunzk@cnpc.com.cn

  • 中图分类号: TE254

Performance Deterioration of High Temperature Filtration Control Agents by CO2 in Deep Formations and Mechanism Analysis Thereof

  • 摘要: 随着酸性气藏的开发,钻井液面临着CO2侵入的风险。由于酸性气藏埋藏深,高温高密度钻井液体系在受到CO2污染后,性能会显著弱化,尤其是滤失量难以控制。室内建立了一种新型的CO2污染评价实验方法,在150℃下,对几种典型的抗高温降滤失剂进行了CO2侵入污染实验评价。基于“降滤失剂+膨润土浆”宏观和微观性能分析,系统研究了CO2对降滤失剂的弱化机制,以及不同降滤失剂的抗CO2污染性能。研究结果表明,磺化类降滤失剂SAS和SMP-III在受到CO2污染后,其水溶性变差,黏度降低、滤失性能恶化,胶体稳定性下降。相比之下,聚合物降滤失剂NH4-HPAN和纤维素类降滤失剂PAC-LV在受到CO2污染后表现出增稠现象。NH4-HPAN在抗CO2污染能力方面表现突出,其降滤失性能、胶体稳定性以及粒径分布均保持良好的稳定性。

     

  • 图  1  室内CO2灌注污染实验方法

    图  2  含有不同降滤失剂基础浆污染前后的流变性能

    图  3  含有不同降滤失剂膨润土浆受CO2污染前后的滤失性能

    图  4  含有不同降滤失剂膨润土浆受CO2污染前后泥饼状态及厚度

    图  5  不同降滤失剂的胶体受CO2污染前后的离心性能

    图  6  含有不同降滤失剂的膨润土浆在污染前后的Zeta电位值

    图  7  CO2污染前后含不同降滤失剂浆体的粒径分布

    图  8  不同降滤失剂受CO2污染前后泥饼SEM形貌

    表  1  二氧化碳污染实验参数

    实验配方 T/
    P/
    MPa
    t/
    h
    CO2污染方式
    气体总量/
    mL
    浆体总量/
    mL
    基浆+处理剂 150 2 4 150 350
     注:基础浆配方为4%膨润土+0.2%NaOH+0.2%VIS-B+2%降滤失剂。
    下载: 导出CSV

    表  2  CO2污染前后4种滤液中降滤失剂的含量

    降滤失剂 实验
    条件
    λ吸收峰/
    nm
    吸光度 浓度/
    g·L−1
    变化率/
    %
    SAS 污染前 199 1.864 11.43 −71.30
    污染后 1.987 3.28
    SMP-III 污染前 285 0.914 21.97 −19.03
    污染后 0.798 17.79
    NH4-HPAN 污染前 240 0.900 21.84 +3.53
    污染后 0.929 22.61
    PAC-LV 污染前 191 1.491 18.75 +22.72
    污染后 1.433 23.01
    下载: 导出CSV

    表  3  含不同降滤失剂的膨润土浆受CO2污染前后的固液分离率

    污染条件 固液分离率/%
    SAS SMP-III NH4-HPAN PAC-LV
    污染前 2.31 34.62 3.85 65.38
    污染后 42.31 76.92 4.62 61.53
    下载: 导出CSV

    表  4  Zeta电位与体系稳定性的关系

    黏土电位值/mV 分散状况
    0 ~ ±5 不分散
    ±10 ~ +30 可能分散
    ±30 ~ ±40 较强分散
    ±40 ~ ±60 极端分散
    下载: 导出CSV

    表  5  CO2污染前后基础膨润土浆体的粒径分布特征参数

    降滤失剂 污染
    条件
    D25/
    μm
    D50/
    μm
    D97/
    μm
    D(4,3) /
    μm
    Span
    SAS 污染前 17.754 23.412 75.980 29.191 1.613
    污染后 21.024 35.863 149.368 47.304 2.270
    SMP-III 污染前 23.542 32.356 68.375 35.323 1.122
    污染后 21.102 28.728 59.624 30.871 1.093
    NH4-HPAN 污染前 11.269 16.170 34.853 17.083 1.241
    污染后 10.886 16.302 40.238 17.863 1.365
    PAC-LV 污染前 14.637 18.633 48.388 20.399 0.964
    污染后 14.206 18.760 37.020 19.715 0.994
    下载: 导出CSV
  • [1] 夏家祥, 杨昌学, 王兴忠. 元坝气田超深酸性气藏钻完井关键技术[J]. 天然气工业,2016,36(9):90-95. doi: 10.3787/j.issn.1000-0976.2016.09.010

    XIA Jiaxiang, YANG Changxue, WANG Xingzhong. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9):90-95. doi: 10.3787/j.issn.1000-0976.2016.09.010
    [2] 李玉飞, 佘朝毅, 刘念念, 等. 龙王庙组气藏高温高压酸性大产量气井完井难点及其对策[J]. 天然气工业,2016,36(4):60-64. doi: 10.3787/j.issn.1000-0976.2016.04.009

    LI Yufei, SHE Chaoyi, LIU Niannian, et al. Completion difficulties of HTHP and high-flowrate sour gas wells in the Longwangmiao Fm gas reservoir, Sichuan Basin, and corresponding countermeasures[J]. Natural Gas Industry, 2016, 36(4):60-64. doi: 10.3787/j.issn.1000-0976.2016.04.009
    [3] 邵天翔, 黎洪珍. 川东酸性环境中油管腐蚀分析及预防措施[J]. 中外能源,2013,18(8):54-59.

    SHAO Tianxiang, LI Hongzhen. Analysis and preventive measure for tubing corrosion in acidic environment of the East Sichuan[J]. Sino-global Energy, 2013, 18(8):54-59.
    [4] 薛丽娜, 周小虎, 严焱诚, 等. 高温酸性气藏油层套管选材探析——以四川盆地元坝气田为例[J]. 天然气工业,2013,33(1):85-89. doi: 10.3787/j.issn.1000-0976.2013.01.014

    XUE Lina, ZHOU Xiaohu, YAN Yancheng, et al. Material selection of the production casing in high-temperature sour gas reservoirs in the Changxing Formation, Yuanba Gas Field, northeastern Sichuan Basin[J]. Natural Gas Industry, 2013, 33(1):85-89. doi: 10.3787/j.issn.1000-0976.2013.01.014
    [5] 王峰, 尹国君, 陈强, 等. 长岭气田高含CO2酸性气藏采气技术[J]. 石油钻采工艺,2010,32(S1):124-126.

    WANG Feng, YIN Guojun, CHEN Qiang, et al. Gas production technology for acidic reservoir with high CO2 content in Changling gas field[J]. Oil Drilling & Production Technology, 2010, 32(S1):124-126.
    [6] 刘大伟, 康毅力, 李前贵, 等. 高含酸性气碳酸盐岩气藏流体敏感性实验研究[J]. 油田化学,2007,24(3):193-196,201. doi: 10.3969/j.issn.1000-4092.2007.03.001

    LIU Dawei, KANG Yili, LI Qiangui, et al. Experimental research on fluid sensitivity of carbonate gas reservoirs with high content of acidic gas[J]. Oilfield Chemistry, 2007, 24(3):193-196,201. doi: 10.3969/j.issn.1000-4092.2007.03.001
    [7] 孙晨曦. 高温高压气藏井筒水合物及产能预测[D]. 北京: 中国石油大学(北京), 2020.

    SUN Chenxi. Wellbore gas hydrate and productivity forecast in HighTemperature and high pressure gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020.
    [8] 肖波. 海洋高温高压井酸性气体气侵期间井筒多相流动规律研究[D]. 青岛: 中国石油大学(华东), 2020.

    XIAO Bo. Study on multiphase flow during acid gas intrusion in offshore high temperature and high pressure wells[D]. Qingdao: China University of Petroleum(East China), 2020.
    [9] 李文涛. 四川页岩气井碳酸根/碳酸氢根污染问题的处理实践[J]. 钻井液与完井液,2022,39(1):53-58. doi: 10.12358/j.issn.1001-5620.2022.01.009

    LI Wentao. Study and treatment on carbonate/bicarbonate pollution in shale gas wells in Sichuan[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):53-58. doi: 10.12358/j.issn.1001-5620.2022.01.009
    [10] 吴奇兵, 李早元, 崔茂荣, 等. 聚磺钻井液中碳酸(氢)根来源分析及预防处理措施[J]. 钻井液与完井液,2012,29(4):27-30. doi: 10.3969/j.issn.1001-5620.2012.04.008

    WU Qibing, LI Zaoyuan, CUI Maorong, et al. Resource and prevention measures of CO32−(or HCO3)in polysulfonate drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2012, 29(4):27-30. doi: 10.3969/j.issn.1001-5620.2012.04.008
    [11] 张恒, 回海军. 肖探1井高温钻井液碳酸根和碳酸氢根污染及处理[J]. 化工管理,2023(20):52-54,123.

    ZHANG Heng, HUI Haijun. Pollution and treatment of carbonate and bicarbonate to high-temperature drilling fluid in Xiaotan 1 well[J]. Chemical Enterprise Management, 2023(20):52-54,123.
    [12] 徐晨阳, 黄志宇, 门欣, 等. 高密度钾聚磺钻井液体系受CO2 污染机理研究[J]. 应用化工,2023,52(2):480-484. doi: 10.3969/j.issn.1671-3206.2023.02.030

    XU Chenyang, HUANG Zhiyu, MEN Xin, et al. Study on the mechanism of high-density Potassium polysulfonate drilling fluid system contaminated by CO2[J]. Applied Chemical Industry, 2023, 52(2):480-484. doi: 10.3969/j.issn.1671-3206.2023.02.030
    [13] 李茂森, 徐晨阳, 范劲, 等. 钻井液处理剂受CO2及盐膏污染机理研究[J]. 山西化工,2023,43(8):1-3,19.

    LI Maosen, XU Chenyang, FAN Jin, et al. Research on the mechanism of CO2 and salt paste pollution on drilling fluid treatment agents[J]. Shanxi Chemical Industry, 2023, 43(8):1-3,19.
    [14] 范劲, 徐晨阳, 李俊才, 等. 受CO2污染的钾聚磺钻井液体系维护工艺研究[J]. 广州化工,2022,50(20):181-184. doi: 10.3969/j.issn.1001-9677.2022.20.054

    FAN Jin, XU Chenyang, LI Juncai, et al. Study on maintenance technology of Potassium polysulfonate drilling fluid system contaminated by CO2[J]. Guangzhou Chemical Industry, 2022, 50(20):181-184. doi: 10.3969/j.issn.1001-9677.2022.20.054
    [15] 王桂全, 孙玉学, 郑贵, 等. 有机硅钻井液CO2污染前后高温高压流变性的研究[C]//2021油气田勘探与开发国际会议论文集. 青岛, 2021: 337-343.

    WANG Guiquan, SUN Yuxue, ZHENG Gui, et al. The research on HTHP rheology in organo Silicon drilling fluid changes due to CO2 pollution[C]//Proceedings of the 2021 International Conference on Oil and Gas Field Exploration and Development. Qingdao, 2021: 337-343.
    [16] 蒲亮春, 邓明毅, 李洪明, 等. 几种新型抗高温降滤失剂对钻井液粒度分布的影响[J]. 钻井液与完井液,2015,32(4):21-24.

    PU Liangchun, DENG Mingyi, LI Hongming, et al. Effect of three new high temperature filtrate reducers on particle size distribution of drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):21-24.
    [17] 吴艳婷, 全红平, 黄志宇, 等. 抗高温钻井液降滤失剂的合成及机理研究[J]. 石油化工,2023,52(7):946-955. doi: 10.3969/j.issn.1000-8144.2023.07.009

    WU Yanting, QUAN Hongping, HUANG Zhiyu, et al. Synthesis and mechanism of fluid loss additive for high temperature resistant drilling fluid[J]. Petrochemical Technology, 2023, 52(7):946-955. doi: 10.3969/j.issn.1000-8144.2023.07.009
    [18] 王琳, 杨小华, 钱晓琳, 等. 抗高钙盐钻井液降滤失剂CARF-1合成及性能研究[J]. 化学工程师,2023,37(3):55-59,79.

    WANG Lin, YANG Xiaohua, QIAN Xiaolin, et al. Study on synthsis and properties of fluid loss reducer CARF-1 for high Calcium salt drilling fluid[J]. Chemical Engineer, 2023, 37(3):55-59,79.
    [19] 艾加伟. 水基钻井液CO2污染机理及处理技术研究[D]. 成都: 西南石油大学, 2015.

    AI Jiawei. Study on CO2 pollution mechanism and treatment technology of water-based drilling fluid[D]. Chengdu: Southwest Petroleum University, 2015.
    [20] 王志伟. 钻井液碳酸根碳酸氢根污染机理[D]. 青岛: 中国石油大学(华东), 2014.

    WANG Zhiwei. Pollution mechanism of carbonate/bicarbonate root in drilling fluid[D]. Qingdao: China University of Petroleum (East China), 2014.
    [21] 郑艳茹. 钻井液碳酸根/碳酸氢根污染机理研究[D]. 青岛: 中国石油大学(华东), 2011.

    ZHENG Yanru. Research on pollution mechanism of carbonate/bicarbonate root in drilling fluid[D]. Qingdao: China University of Petroleum (East China), 2011.
    [22] 向朝纲, 陈俊斌, 王龙. CO2对高密度水基钻井液性能影响规律及机理分析[J]. 钻井液与完井液,2018,35(5):26-30,35.

    XIANG Chaogang, CHEN Junbin, WANG Long. Analyses of the effects of CO2 on the properties of high-density water base drilling fluid and the mechanisms of the effects[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):26-30,35
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-27
  • 修回日期:  2025-03-01
  • 刊出日期:  2025-07-31

目录

    /

    返回文章
    返回