Performance Deterioration of High Temperature Filtration Control Agents by CO2 in Deep Formations and Mechanism Analysis Thereof
-
摘要: 随着酸性气藏的开发,钻井液面临着CO2侵入的风险。由于酸性气藏埋藏深,高温高密度钻井液体系在受到CO2污染后,性能会显著弱化,尤其是滤失量难以控制。室内建立了一种新型的CO2污染评价实验方法,在150℃下,对几种典型的抗高温降滤失剂进行了CO2侵入污染实验评价。基于“降滤失剂+膨润土浆”宏观和微观性能分析,系统研究了CO2对降滤失剂的弱化机制,以及不同降滤失剂的抗CO2污染性能。研究结果表明,磺化类降滤失剂SAS和SMP-III在受到CO2污染后,其水溶性变差,黏度降低、滤失性能恶化,胶体稳定性下降。相比之下,聚合物降滤失剂NH4-HPAN和纤维素类降滤失剂PAC-LV在受到CO2污染后表现出增稠现象。NH4-HPAN在抗CO2污染能力方面表现突出,其降滤失性能、胶体稳定性以及粒径分布均保持良好的稳定性。Abstract: In developing deep acidic gas reservoirs, CO2 invasion and contamination cause the properties of high density drilling fluids, especially their ability to control filtration rate, to remarkably deteriorate at elevated temperatures. A new method has been developed to evaluate the contamination of a drilling fluid by CO2 in laboratory, and several typical high temperature filtration control agents were evaluated at 150℃ for their ability to resist CO2 contamination. Based on the macro and micro analyses of the performance of a “filtration control agent + bentonite slurry” system, the mechanisms with which CO2 causes the performance of a filtration control agent to deteriorate were systematically studied. The results of the study show that after being contaminated by CO2, the water solubility of the sulfonate type filtration control agents SAS and SMP-III was reduced, resulting in low viscosity, poor filtration property and reduced colloidal stability of the system. Acrylonitrile filtration control agent NH4-HPAN and cellulose filtration control agent PAC-LV, on the other hand, cause the system to viscosify after being contaminated by CO2. Compared with other filtration control agents, NH4-HPAN performs much better in resisting CO2 contamination, its properties in controlling filtration rate, stabilizing colloid and maintaining good particle size distribution of the system all remain stable.
-
表 1 二氧化碳污染实验参数
实验配方 T/
℃P/
MPat/
hCO2污染方式 气体总量/
mL浆体总量/
mL基浆+处理剂 150 2 4 150 350 注:基础浆配方为4%膨润土+0.2%NaOH+0.2%VIS-B+2%降滤失剂。 表 2 CO2污染前后4种滤液中降滤失剂的含量
降滤失剂 实验
条件λ吸收峰/
nm吸光度 浓度/
g·L−1变化率/
%SAS 污染前 199 1.864 11.43 −71.30 污染后 1.987 3.28 SMP-III 污染前 285 0.914 21.97 −19.03 污染后 0.798 17.79 NH4-HPAN 污染前 240 0.900 21.84 +3.53 污染后 0.929 22.61 PAC-LV 污染前 191 1.491 18.75 +22.72 污染后 1.433 23.01 表 3 含不同降滤失剂的膨润土浆受CO2污染前后的固液分离率
污染条件 固液分离率/% SAS SMP-III NH4-HPAN PAC-LV 污染前 2.31 34.62 3.85 65.38 污染后 42.31 76.92 4.62 61.53 表 4 Zeta电位与体系稳定性的关系
黏土电位值/mV 分散状况 0 ~ ±5 不分散 ±10 ~ +30 可能分散 ±30 ~ ±40 较强分散 ±40 ~ ±60 极端分散 表 5 CO2污染前后基础膨润土浆体的粒径分布特征参数
降滤失剂 污染
条件D25/
μmD50/
μmD97/
μmD(4,3) /
μmSpan SAS 污染前 17.754 23.412 75.980 29.191 1.613 污染后 21.024 35.863 149.368 47.304 2.270 SMP-III 污染前 23.542 32.356 68.375 35.323 1.122 污染后 21.102 28.728 59.624 30.871 1.093 NH4-HPAN 污染前 11.269 16.170 34.853 17.083 1.241 污染后 10.886 16.302 40.238 17.863 1.365 PAC-LV 污染前 14.637 18.633 48.388 20.399 0.964 污染后 14.206 18.760 37.020 19.715 0.994 -
[1] 夏家祥, 杨昌学, 王兴忠. 元坝气田超深酸性气藏钻完井关键技术[J]. 天然气工业,2016,36(9):90-95. doi: 10.3787/j.issn.1000-0976.2016.09.010XIA Jiaxiang, YANG Changxue, WANG Xingzhong. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9):90-95. doi: 10.3787/j.issn.1000-0976.2016.09.010 [2] 李玉飞, 佘朝毅, 刘念念, 等. 龙王庙组气藏高温高压酸性大产量气井完井难点及其对策[J]. 天然气工业,2016,36(4):60-64. doi: 10.3787/j.issn.1000-0976.2016.04.009LI Yufei, SHE Chaoyi, LIU Niannian, et al. Completion difficulties of HTHP and high-flowrate sour gas wells in the Longwangmiao Fm gas reservoir, Sichuan Basin, and corresponding countermeasures[J]. Natural Gas Industry, 2016, 36(4):60-64. doi: 10.3787/j.issn.1000-0976.2016.04.009 [3] 邵天翔, 黎洪珍. 川东酸性环境中油管腐蚀分析及预防措施[J]. 中外能源,2013,18(8):54-59.SHAO Tianxiang, LI Hongzhen. Analysis and preventive measure for tubing corrosion in acidic environment of the East Sichuan[J]. Sino-global Energy, 2013, 18(8):54-59. [4] 薛丽娜, 周小虎, 严焱诚, 等. 高温酸性气藏油层套管选材探析——以四川盆地元坝气田为例[J]. 天然气工业,2013,33(1):85-89. doi: 10.3787/j.issn.1000-0976.2013.01.014XUE Lina, ZHOU Xiaohu, YAN Yancheng, et al. Material selection of the production casing in high-temperature sour gas reservoirs in the Changxing Formation, Yuanba Gas Field, northeastern Sichuan Basin[J]. Natural Gas Industry, 2013, 33(1):85-89. doi: 10.3787/j.issn.1000-0976.2013.01.014 [5] 王峰, 尹国君, 陈强, 等. 长岭气田高含CO2酸性气藏采气技术[J]. 石油钻采工艺,2010,32(S1):124-126.WANG Feng, YIN Guojun, CHEN Qiang, et al. Gas production technology for acidic reservoir with high CO2 content in Changling gas field[J]. Oil Drilling & Production Technology, 2010, 32(S1):124-126. [6] 刘大伟, 康毅力, 李前贵, 等. 高含酸性气碳酸盐岩气藏流体敏感性实验研究[J]. 油田化学,2007,24(3):193-196,201. doi: 10.3969/j.issn.1000-4092.2007.03.001LIU Dawei, KANG Yili, LI Qiangui, et al. Experimental research on fluid sensitivity of carbonate gas reservoirs with high content of acidic gas[J]. Oilfield Chemistry, 2007, 24(3):193-196,201. doi: 10.3969/j.issn.1000-4092.2007.03.001 [7] 孙晨曦. 高温高压气藏井筒水合物及产能预测[D]. 北京: 中国石油大学(北京), 2020.SUN Chenxi. Wellbore gas hydrate and productivity forecast in HighTemperature and high pressure gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020. [8] 肖波. 海洋高温高压井酸性气体气侵期间井筒多相流动规律研究[D]. 青岛: 中国石油大学(华东), 2020.XIAO Bo. Study on multiphase flow during acid gas intrusion in offshore high temperature and high pressure wells[D]. Qingdao: China University of Petroleum(East China), 2020. [9] 李文涛. 四川页岩气井碳酸根/碳酸氢根污染问题的处理实践[J]. 钻井液与完井液,2022,39(1):53-58. doi: 10.12358/j.issn.1001-5620.2022.01.009LI Wentao. Study and treatment on carbonate/bicarbonate pollution in shale gas wells in Sichuan[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):53-58. doi: 10.12358/j.issn.1001-5620.2022.01.009 [10] 吴奇兵, 李早元, 崔茂荣, 等. 聚磺钻井液中碳酸(氢)根来源分析及预防处理措施[J]. 钻井液与完井液,2012,29(4):27-30. doi: 10.3969/j.issn.1001-5620.2012.04.008WU Qibing, LI Zaoyuan, CUI Maorong, et al. Resource and prevention measures of CO32−(or HCO3−)in polysulfonate drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2012, 29(4):27-30. doi: 10.3969/j.issn.1001-5620.2012.04.008 [11] 张恒, 回海军. 肖探1井高温钻井液碳酸根和碳酸氢根污染及处理[J]. 化工管理,2023(20):52-54,123.ZHANG Heng, HUI Haijun. Pollution and treatment of carbonate and bicarbonate to high-temperature drilling fluid in Xiaotan 1 well[J]. Chemical Enterprise Management, 2023(20):52-54,123. [12] 徐晨阳, 黄志宇, 门欣, 等. 高密度钾聚磺钻井液体系受CO2 污染机理研究[J]. 应用化工,2023,52(2):480-484. doi: 10.3969/j.issn.1671-3206.2023.02.030XU Chenyang, HUANG Zhiyu, MEN Xin, et al. Study on the mechanism of high-density Potassium polysulfonate drilling fluid system contaminated by CO2[J]. Applied Chemical Industry, 2023, 52(2):480-484. doi: 10.3969/j.issn.1671-3206.2023.02.030 [13] 李茂森, 徐晨阳, 范劲, 等. 钻井液处理剂受CO2及盐膏污染机理研究[J]. 山西化工,2023,43(8):1-3,19.LI Maosen, XU Chenyang, FAN Jin, et al. Research on the mechanism of CO2 and salt paste pollution on drilling fluid treatment agents[J]. Shanxi Chemical Industry, 2023, 43(8):1-3,19. [14] 范劲, 徐晨阳, 李俊才, 等. 受CO2污染的钾聚磺钻井液体系维护工艺研究[J]. 广州化工,2022,50(20):181-184. doi: 10.3969/j.issn.1001-9677.2022.20.054FAN Jin, XU Chenyang, LI Juncai, et al. Study on maintenance technology of Potassium polysulfonate drilling fluid system contaminated by CO2[J]. Guangzhou Chemical Industry, 2022, 50(20):181-184. doi: 10.3969/j.issn.1001-9677.2022.20.054 [15] 王桂全, 孙玉学, 郑贵, 等. 有机硅钻井液CO2污染前后高温高压流变性的研究[C]//2021油气田勘探与开发国际会议论文集. 青岛, 2021: 337-343.WANG Guiquan, SUN Yuxue, ZHENG Gui, et al. The research on HTHP rheology in organo Silicon drilling fluid changes due to CO2 pollution[C]//Proceedings of the 2021 International Conference on Oil and Gas Field Exploration and Development. Qingdao, 2021: 337-343. [16] 蒲亮春, 邓明毅, 李洪明, 等. 几种新型抗高温降滤失剂对钻井液粒度分布的影响[J]. 钻井液与完井液,2015,32(4):21-24.PU Liangchun, DENG Mingyi, LI Hongming, et al. Effect of three new high temperature filtrate reducers on particle size distribution of drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):21-24. [17] 吴艳婷, 全红平, 黄志宇, 等. 抗高温钻井液降滤失剂的合成及机理研究[J]. 石油化工,2023,52(7):946-955. doi: 10.3969/j.issn.1000-8144.2023.07.009WU Yanting, QUAN Hongping, HUANG Zhiyu, et al. Synthesis and mechanism of fluid loss additive for high temperature resistant drilling fluid[J]. Petrochemical Technology, 2023, 52(7):946-955. doi: 10.3969/j.issn.1000-8144.2023.07.009 [18] 王琳, 杨小华, 钱晓琳, 等. 抗高钙盐钻井液降滤失剂CARF-1合成及性能研究[J]. 化学工程师,2023,37(3):55-59,79.WANG Lin, YANG Xiaohua, QIAN Xiaolin, et al. Study on synthsis and properties of fluid loss reducer CARF-1 for high Calcium salt drilling fluid[J]. Chemical Engineer, 2023, 37(3):55-59,79. [19] 艾加伟. 水基钻井液CO2污染机理及处理技术研究[D]. 成都: 西南石油大学, 2015.AI Jiawei. Study on CO2 pollution mechanism and treatment technology of water-based drilling fluid[D]. Chengdu: Southwest Petroleum University, 2015. [20] 王志伟. 钻井液碳酸根碳酸氢根污染机理[D]. 青岛: 中国石油大学(华东), 2014.WANG Zhiwei. Pollution mechanism of carbonate/bicarbonate root in drilling fluid[D]. Qingdao: China University of Petroleum (East China), 2014. [21] 郑艳茹. 钻井液碳酸根/碳酸氢根污染机理研究[D]. 青岛: 中国石油大学(华东), 2011.ZHENG Yanru. Research on pollution mechanism of carbonate/bicarbonate root in drilling fluid[D]. Qingdao: China University of Petroleum (East China), 2011. [22] 向朝纲, 陈俊斌, 王龙. CO2对高密度水基钻井液性能影响规律及机理分析[J]. 钻井液与完井液,2018,35(5):26-30,35.XIANG Chaogang, CHEN Junbin, WANG Long. Analyses of the effects of CO2 on the properties of high-density water base drilling fluid and the mechanisms of the effects[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):26-30,35 -