Study on Gel Plugging Agent and Plugging Mechanism Based on Hydrophobic Association
-
摘要: 井漏问题一直是影响钻井作业安全与高效进行的重大挑战。以甲基丙烯酸月桂酯(LMA)为疏水性单体,丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)为亲水性单体,通过自由基聚合法合成了凝胶封堵剂(LAS),并利用Al3+金属离子与聚合物分子链上的羧基配位作用增强凝胶的力学性能。结果表明,LAS凝胶表现出可再交联特性,在高温和高压条件下具有良好的封堵性能和自适应性。在120℃、6 MPa下,2%浓度的LAS凝胶对20~40目、40~60目和60~80目裂缝模拟砂床的漏失体积分别为69.5 mL、58.3 mL和41 mL,封堵性能明显优于常规凝胶和传统封堵剂。同时,LAS凝胶在不同温度和盐浓度条件下均具有较好的溶胀和流变性能,可在地层温度激发下形成稳定的封堵层,从而有效降低漏失体积。LAS凝胶的动态可再交联性使其在高温和高压环境下依然保持良好的封堵效果,在工作液漏失治理方面有着一定的应用前景。Abstract: lost circulation has long been a major challenge affecting the safety and efficiency of drilling operations. In this study, a gel plugging agent (LAS) was synthesized via free radical polymerization using lauryl methacrylate (LMA) as the hydrophobic monomer and acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), and acrylic acid (AA) as hydrophilic monomers. The mechanical properties of the gel were enhanced by the coordination interaction between Al3+ metal ions and carboxyl groups on the polymer molecular chains. The results demonstrated that the LAS gel exhibited re-crosslinkable characteristics, along with excellent plugging performance and self-adaptive properties under high-temperature and high-pressure conditions. Under conditions of 120℃ and 6 MPa pressure, the leakage volumes of 2% LAS gel for simulated fracture sand beds with particle sizes of 20-40 mesh, 40-60 mesh, and 60-80 mesh were 69.5 mL, 58.3 mL, and 41 mL, respectively. This plugging performance significantly surpassed that of conventional gels and traditional plugging agents. Additionally, the LAS gel demonstrated superior swelling and rheological properties across varying temperatures and salinity levels. It could form a stable plugging layer under formation temperature activation, effectively reducing leakage volume. The dynamic re-crosslinking capability of the LAS gel ensured robust plugging effects even in extreme high-temperature and high-pressure environments, highlighting its potential for application in workflow leakage control.
-
Key words:
- Lost circulation materials /
- Gels /
- Dynamic reversible bond /
- Hydrophobic association /
- Re-crosslinking
-
表 1 LAS凝胶的溶胀动力学参数
T/℃ n 截距 R2 20 0.966 −0.694 0.989 50 0.718 −0.474 0.957 80 0.591 −0.364 0.947 表 2 LAS凝胶对基浆流变和滤失性能的影响
堵漏浆 AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mL膨润土浆 12.0 7.0 5.0 25.8 膨润土浆+2%LAS 14.5 8.0 6.5 12.3 -
[1] 孙金声, 杨景斌, 白英睿, 等. 裂缝性地层桥接堵漏技术发展综述与展望[J]. 石油科学通报,2023,8(4):415-431. doi: 10.3969/j.issn.2096-1693.2023.04.032SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Review and prospect of bridging plugging technology in fractured formation[J]. Petroleum Science Bulletin, 2023, 8(4):415-431. doi: 10.3969/j.issn.2096-1693.2023.04.032 [2] 王中义, 孙金声, 黄贤斌, 等. LCST型温度敏感聚合物的研究及其在钻井液领域的应用进展[J]. 精细化工,2024,41(10):2103-2119.WANG Zhongyi, SUN Jinsheng, HUANG Xianbin, et al. Research on LCST-type temperature-sensitive polymers and their application progress in drilling fluids[J]. Fine Chemicals, 2024, 41(10):2103-2119. [3] 王晓南, 付菁奥, 陈思思, 等. 水凝胶在油田开采领域的研究进展[J]. 中国塑料,2023,37(10):101-110.WANG Xiaonan, FU Jingao, CHEN Sisi, et al. Research progress in hydrogel for oilfield development[J]. China Plastics, 2023, 37(10):101-110. [4] LIU Z T, WEI P, QI Y, et al. High stretchable and self-healing nanocellulose-poly (acrylic acid) composite hydrogels for sustainable CO2 shutoff[J]. Carbohydrate Polymers, 2023, 311:120759. doi: 10.1016/j.carbpol.2023.120759 [5] WANG C, SUN J S, LONG Y F, et al. Rapid self-healing nanocomposite gel crosslinked by LDH for lost circulation control[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 695:134207. doi: 10.1016/j.colsurfa.2024.134207 [6] 杨景斌, 白英睿, 孙金声, 等. 超分子凝胶封堵剂及其封堵机制[J/OL]. 中国石油大学学报(自然科学版), 2025: 1-16(2024-04-25).YANG Jingbin, BAI Yingrui, SUN Jinsheng, et al. Supramolecular gel plugging agent and its plugging mechanism[J/OL]. Journal of China University of Petroleum (Edition of Natural Science), 2025: 1-16(2024-04-25). [7] 艾磊, 宫臣兴, 谢江锋, 等. 超分子聚合物堵漏技术在长庆油田恶性漏失井的应用[J]. 钻井液与完井液,2021,38(6):705-714. doi: 10.12358/j.issn.1001-5620.2021.06.007AI Lei, GONG Chenxing, XIE Jiangfeng, et al. Application of supramolecular polymer plugging technology in changqing oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):705-714. doi: 10.12358/j.issn.1001-5620.2021.06.007 [8] LIU M X, ZHU S, HUANG Y J, et al. A self-healing composite actuator for multifunctional soft robot via photo-welding[J]. Composites Part B Engineering, 2021, 214:108748. doi: 10.1016/j.compositesb.2021.108748 [9] BAI Y R, ZHANG Q T, SUN J S, et al. Double network self-healing hydrogel based on hydrophobic association and Ionic bond for formation plugging[J]. Petroleum Science, 2022, 19(5):2150-2164. doi: 10.1016/j.petsci.2022.07.006 [10] 孙金声, 杨景斌, 白英睿, 等. 超分子凝胶形成机理及其在油气钻采工程领域应用现状和前景[J]. 石油学报,2022,43(9):1334-1350.SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Formation mechanism of supramolecular gel and its application status and prospect in the field of oil and gas drilling and production engineering[J]. Acta Petrolei Sinica, 2022, 43(9):1334-1350. [11] ZENG R P, QI C Y, LU S X, et al. Hydrophobic association and Ionic coordination dual crossed-linked conductive hydrogels with self-adhesive and self-healing virtues for conformal strain sensors[J]. Journal of Polymer Science, 2022, 60(5):812-824. doi: 10.1002/pol.20210840 [12] LIANG M, GE X, DAI J, et al. High-strength hydrogel adhesive formed via multiple interactions for persistent adhesion under saline[J]. ACS Applied Bio Materials, 2021, 4(6):5016-5025. doi: 10.1021/acsabm.1c00293 [13] WEI Q B, LUO Y L, FU F, et al. Synthesis, characterization, and swelling kinetics of pH-responsive and temperature-responsive carboxymethyl chitosan/polyacrylamide hydrogels[J]. Journal of Applied Polymer Science, 2013, 129(2):806-814. doi: 10.1002/app.38788 [14] 徐鸿涛, 沈勇, 潘虹, 等. L-半胱氨酸改性甲基纤维素自愈合水凝胶的制备及其性能研究[J]. 化工新型材料,2024,52(2):154-159.XU Hongtao, SHEN Yong, PAN Hong, et al. Preparation and properties of methylcellulose self-healing hydrogel modified by L-cysteine[J]. New Chemical Materials, 2024, 52(2):154-159. [15] ZHAO Y Z, LIANG Q D, MUGO S M, et al. Self-healing and shape-editable wearable supercapacitors based on highly stretchable hydrogel electrolytes[J]. Advanced Science, 2022, 9(24):202201039. [16] TERECH P, YAN M H, MARÉCHAL M, et al. Characterization of strain recovery and "self-healing" in a self-assembled metallo-gel[J]. Physical Chemistry Chemical Physics, 2013, 15(19):7338-7344. doi: 10.1039/c3cp50671a [17] WANG M, CHEN Y, KHAN R, et al. A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567:139-149. doi: 10.1016/j.colsurfa.2019.01.034 [18] QIN Z H, NIU R, TANG C J, et al. A dual-crosslinked strategy to construct physical hydrogels with high strength, toughness, good mechanical recoverability, and shape-memory ability[J]. Macromolecular Materials and Engineering, 2018, 303(2):201700396. [19] 王艳萍, 郝红, 韦雄雄, 等. 聚合物胶束的研究及应用进展[J]. 离子交换与吸附,2013,29(6):569-876.WANG Yanping, HAO Hong, WEI Xiongxiong, et al. Research and application of polymeric micelles[J]. Ion Exchange and Adsorption, 2013, 29(6):569-876. -