留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于疏水缔合作用的凝胶封堵剂及封堵机制研究

李文哲 黄桃 唐宜家 王锐 夏连彬 汪瑶

李文哲,黄桃,唐宜家,等. 基于疏水缔合作用的凝胶封堵剂及封堵机制研究[J]. 钻井液与完井液,2025,42(4):486-493 doi: 10.12358/j.issn.1001-5620.2025.04.007
引用本文: 李文哲,黄桃,唐宜家,等. 基于疏水缔合作用的凝胶封堵剂及封堵机制研究[J]. 钻井液与完井液,2025,42(4):486-493 doi: 10.12358/j.issn.1001-5620.2025.04.007
LI Wenzhe, HUANG Tao, TANG Yijia, et al.Study on gel plugging agent and plugging mechanism based on hydrophobic association[J]. Drilling Fluid & Completion Fluid,2025, 42(4):486-493 doi: 10.12358/j.issn.1001-5620.2025.04.007
Citation: LI Wenzhe, HUANG Tao, TANG Yijia, et al.Study on gel plugging agent and plugging mechanism based on hydrophobic association[J]. Drilling Fluid & Completion Fluid,2025, 42(4):486-493 doi: 10.12358/j.issn.1001-5620.2025.04.007

基于疏水缔合作用的凝胶封堵剂及封堵机制研究

doi: 10.12358/j.issn.1001-5620.2025.04.007
基金项目: 中国石油西南油气田分公司科技攻关项目“深层页岩气防漏堵漏及提高地层承压能力技术研究”(XNS工程院JS2023-137)。
详细信息
    作者简介:

    李文哲,高级工程师,主要从事石油工程技术研究与管理工作。E-mail:lwz9@petrochina.com.cn

    通讯作者:

    黄桃,主要从事钻井技术研究工作。E-mail:1306376529@qq.com

  • 中图分类号: TE282

Study on Gel Plugging Agent and Plugging Mechanism Based on Hydrophobic Association

  • 摘要: 井漏问题一直是影响钻井作业安全与高效进行的重大挑战。以甲基丙烯酸月桂酯(LMA)为疏水性单体,丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)为亲水性单体,通过自由基聚合法合成了凝胶封堵剂(LAS),并利用Al3+金属离子与聚合物分子链上的羧基配位作用增强凝胶的力学性能。结果表明,LAS凝胶表现出可再交联特性,在高温和高压条件下具有良好的封堵性能和自适应性。在120℃、6 MPa下,2%浓度的LAS凝胶对20~40目、40~60目和60~80目裂缝模拟砂床的漏失体积分别为69.5 mL、58.3 mL和41 mL,封堵性能明显优于常规凝胶和传统封堵剂。同时,LAS凝胶在不同温度和盐浓度条件下均具有较好的溶胀和流变性能,可在地层温度激发下形成稳定的封堵层,从而有效降低漏失体积。LAS凝胶的动态可再交联性使其在高温和高压环境下依然保持良好的封堵效果,在工作液漏失治理方面有着一定的应用前景。

     

  • 图  1  LAS凝胶的形成过程

    图  2  LAS凝胶的再交联过程

    图  3  AlCl3和LMA对LAS凝胶再交联时间的影响

    图  4  AlCl3和LMA对LAS凝胶流变强度的影响

    图  5  LAS凝胶的FT-IR光谱

    图  6  LAS凝胶的SEM图片和孔径分布

    图  7  LAS凝胶的膨胀曲线

    图  8  LAS凝胶的溶胀动力学

    图  9  LAS凝胶的流变性能扫描曲线

    图  10  LAS凝胶和常规封堵剂的封堵性能对比

    图  11  LAS凝胶的堵漏机制

    表  1  LAS凝胶的溶胀动力学参数

    T/℃ n 截距 R2
    20 0.966 −0.694 0.989
    50 0.718 −0.474 0.957
    80 0.591 −0.364 0.947
    下载: 导出CSV

    表  2  LAS凝胶对基浆流变和滤失性能的影响

    堵漏浆AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    膨润土浆12.07.05.025.8
    膨润土浆+2%LAS14.58.06.512.3
    下载: 导出CSV
  • [1] 孙金声, 杨景斌, 白英睿, 等. 裂缝性地层桥接堵漏技术发展综述与展望[J]. 石油科学通报,2023,8(4):415-431. doi: 10.3969/j.issn.2096-1693.2023.04.032

    SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Review and prospect of bridging plugging technology in fractured formation[J]. Petroleum Science Bulletin, 2023, 8(4):415-431. doi: 10.3969/j.issn.2096-1693.2023.04.032
    [2] 王中义, 孙金声, 黄贤斌, 等. LCST型温度敏感聚合物的研究及其在钻井液领域的应用进展[J]. 精细化工,2024,41(10):2103-2119.

    WANG Zhongyi, SUN Jinsheng, HUANG Xianbin, et al. Research on LCST-type temperature-sensitive polymers and their application progress in drilling fluids[J]. Fine Chemicals, 2024, 41(10):2103-2119.
    [3] 王晓南, 付菁奥, 陈思思, 等. 水凝胶在油田开采领域的研究进展[J]. 中国塑料,2023,37(10):101-110.

    WANG Xiaonan, FU Jingao, CHEN Sisi, et al. Research progress in hydrogel for oilfield development[J]. China Plastics, 2023, 37(10):101-110.
    [4] LIU Z T, WEI P, QI Y, et al. High stretchable and self-healing nanocellulose-poly (acrylic acid) composite hydrogels for sustainable CO2 shutoff[J]. Carbohydrate Polymers, 2023, 311:120759. doi: 10.1016/j.carbpol.2023.120759
    [5] WANG C, SUN J S, LONG Y F, et al. Rapid self-healing nanocomposite gel crosslinked by LDH for lost circulation control[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 695:134207. doi: 10.1016/j.colsurfa.2024.134207
    [6] 杨景斌, 白英睿, 孙金声, 等. 超分子凝胶封堵剂及其封堵机制[J/OL]. 中国石油大学学报(自然科学版), 2025: 1-16(2024-04-25).

    YANG Jingbin, BAI Yingrui, SUN Jinsheng, et al. Supramolecular gel plugging agent and its plugging mechanism[J/OL]. Journal of China University of Petroleum (Edition of Natural Science), 2025: 1-16(2024-04-25).
    [7] 艾磊, 宫臣兴, 谢江锋, 等. 超分子聚合物堵漏技术在长庆油田恶性漏失井的应用[J]. 钻井液与完井液,2021,38(6):705-714. doi: 10.12358/j.issn.1001-5620.2021.06.007

    AI Lei, GONG Chenxing, XIE Jiangfeng, et al. Application of supramolecular polymer plugging technology in changqing oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):705-714. doi: 10.12358/j.issn.1001-5620.2021.06.007
    [8] LIU M X, ZHU S, HUANG Y J, et al. A self-healing composite actuator for multifunctional soft robot via photo-welding[J]. Composites Part B Engineering, 2021, 214:108748. doi: 10.1016/j.compositesb.2021.108748
    [9] BAI Y R, ZHANG Q T, SUN J S, et al. Double network self-healing hydrogel based on hydrophobic association and Ionic bond for formation plugging[J]. Petroleum Science, 2022, 19(5):2150-2164. doi: 10.1016/j.petsci.2022.07.006
    [10] 孙金声, 杨景斌, 白英睿, 等. 超分子凝胶形成机理及其在油气钻采工程领域应用现状和前景[J]. 石油学报,2022,43(9):1334-1350.

    SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Formation mechanism of supramolecular gel and its application status and prospect in the field of oil and gas drilling and production engineering[J]. Acta Petrolei Sinica, 2022, 43(9):1334-1350.
    [11] ZENG R P, QI C Y, LU S X, et al. Hydrophobic association and Ionic coordination dual crossed-linked conductive hydrogels with self-adhesive and self-healing virtues for conformal strain sensors[J]. Journal of Polymer Science, 2022, 60(5):812-824. doi: 10.1002/pol.20210840
    [12] LIANG M, GE X, DAI J, et al. High-strength hydrogel adhesive formed via multiple interactions for persistent adhesion under saline[J]. ACS Applied Bio Materials, 2021, 4(6):5016-5025. doi: 10.1021/acsabm.1c00293
    [13] WEI Q B, LUO Y L, FU F, et al. Synthesis, characterization, and swelling kinetics of pH-responsive and temperature-responsive carboxymethyl chitosan/polyacrylamide hydrogels[J]. Journal of Applied Polymer Science, 2013, 129(2):806-814. doi: 10.1002/app.38788
    [14] 徐鸿涛, 沈勇, 潘虹, 等. L-半胱氨酸改性甲基纤维素自愈合水凝胶的制备及其性能研究[J]. 化工新型材料,2024,52(2):154-159.

    XU Hongtao, SHEN Yong, PAN Hong, et al. Preparation and properties of methylcellulose self-healing hydrogel modified by L-cysteine[J]. New Chemical Materials, 2024, 52(2):154-159.
    [15] ZHAO Y Z, LIANG Q D, MUGO S M, et al. Self-healing and shape-editable wearable supercapacitors based on highly stretchable hydrogel electrolytes[J]. Advanced Science, 2022, 9(24):202201039.
    [16] TERECH P, YAN M H, MARÉCHAL M, et al. Characterization of strain recovery and "self-healing" in a self-assembled metallo-gel[J]. Physical Chemistry Chemical Physics, 2013, 15(19):7338-7344. doi: 10.1039/c3cp50671a
    [17] WANG M, CHEN Y, KHAN R, et al. A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567:139-149. doi: 10.1016/j.colsurfa.2019.01.034
    [18] QIN Z H, NIU R, TANG C J, et al. A dual-crosslinked strategy to construct physical hydrogels with high strength, toughness, good mechanical recoverability, and shape-memory ability[J]. Macromolecular Materials and Engineering, 2018, 303(2):201700396.
    [19] 王艳萍, 郝红, 韦雄雄, 等. 聚合物胶束的研究及应用进展[J]. 离子交换与吸附,2013,29(6):569-876.

    WANG Yanping, HAO Hong, WEI Xiongxiong, et al. Research and application of polymeric micelles[J]. Ion Exchange and Adsorption, 2013, 29(6):569-876.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  23
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-05
  • 修回日期:  2025-05-23
  • 刊出日期:  2025-07-31

目录

    /

    返回文章
    返回