Development and Application of Micro-Nano Organic Plugging Agent for Ultra-Deep Well Drilling Fluids
-
摘要: 以有机材料为水解单体,AMPS、DMAA和BA为聚合单体,通过预水解反应和自由基聚合反应两步法制备了一种抗超高温微纳米有机封堵剂(TSF)。通过热重分析显示,TSF的初始热分解温度为240℃,热稳定性优异;220℃老化前后粒径维持在342~825 nm之间,具有分散稳定性;玻璃化转变温度为192℃,能够由玻璃态转变为黏弹橡胶态,具有形变封堵性和黏结固壁性。TSF加量为4%时,220℃老化16 h后,可使钻井液基浆高温高压滤失量降低43.1%,对5 μm和10 μm陶瓷砂盘的高温高压滤失量分别降低37.1%和34.5%,表明TSF封堵降滤失效果优异;在220℃高温下无H2S气体产生,表明TSF在超高温下具有较高的安全性;220℃老化后基浆泥饼渗透率降低50.8%,黏结固壁作用可将岩心柱抗压强度提升12.6~17倍,表明TSF通过自适应充填来提高其对超深井地层孔缝的封堵及固壁性能,并在特深井A中成功应用。Abstract: An ultra-high temperature micro-nano organic plugging agent TSF is developed through a two-step reaction (pre-hydrolysis followed by free radical polymerization) with organic hydrolysable monomers and polymerization monomers such as AMPS, DMAA and BA. Thermogravimetric (TG) analysis shows that the initial thermal decomposition temperature of TSF is 240℃, indicating that TSF has excellent thermal stability. Before and after aging at 220℃, the particle sizes of TSF remain between 342 nm and 825 nm, indicating that TSF has dispersion stability. TSF has a glass transition temperature of 192℃, and can transform from the glassy state to the viscoelastic rubbery state, meaning that it has both plugging capacity through deformation and borehole wall strengthening capacity through adhesion. At 4% TSF treatment, a base drilling fluid, after aging at 220℃ for 16 hours, can have its HTHP filter loss reduced by 43.1%, and have its HTHP filter losses tested on 5 μm and 10 μm ceramic sand discs reduced by 37.1% and 34.5%, respectively. These data show that TSF has excellent filtration control capacity through plugging. At 220℃, TSF produces no H2S, indicating that TSF has good safety performance at ultra-high temperatures. After aging at 220℃, the drilling fluid produced mud cakes whose permeability was reduced by 50.8%. Borehole wall strengthening effect through adhesion of TSF can increase the compressive strengths of core columns by 12.6-17 times, showing that TSF can enhance its ability to plug the fractures in the formations in ultra-deep wells through self-adaptability and to strengthen the borehole wall. These characteristics of TSF have been successfully applied in drilling the ultra-deep well A.
-
表 1 不同封堵剂TSF加量对钻井液基浆性能的影响
TSF/
%实验条件 AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mL0 老化前 7.5 6.0 1.5 23.4 180℃、16 h 10.5 8.0 2.5 45.0 200℃、16 h 10.0 8.5 1.5 56.0 220℃、16 h 9.0 8.0 1.0 65.0 2 老化前 8.0 6.5 1.5 18.4 180℃、16 h 10.0 8.0 2.0 35.8 200℃、16 h 10.0 9.0 1.0 45.0 220℃、16 h 9.0 7.5 1.5 56.4 4 老化前 8.5 7.0 1.5 14.6 180℃、16 h 11.0 9.0 2.0 25.6 200℃、16 h 12.0 10.0 2.0 26.8 220℃、16 h 10.0 9.0 1.0 30.4 6 老化前 9.5 7.5 2.0 12.3 180℃、16 h 12.0 10.0 2.0 22.3 200℃、16 h 13.5 11.0 2.5 23.1 220℃、16 h 11.0 9.5 1.5 30.3 表 2 A井使用井段钻井液性能
井深/
mT/
℃ρ/
g·cm−3FV/
sPV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mL7858 145 1.45 44 17 5.0 2.0/8.0 11.2 7946 150 1.45 45 17 7.0 2.5/10.0 12.0 8057 155 1.45 42 17 8.0 3.0/11.0 12.0 8185 165 1.45 41 22 6.5 3.0/11.0 10.4 8265 165 1.45 42 20 5.5 2.5/9.0 10.0 8409 170 1.48 39 20 6.0 4.5/13.0 8.4 8512 170 1.52 56 22 8.0 3.5/10.5 7.8 8720 175 1.52 45 23 12.5 6.5/12.5 8.0 8899 178 1.45 40 20 4.0 2.0/5.0 9.0 8996 180 1.45 40 20 6.5 2.0/6.0 13.2 9100 180 1.45 41 24 8.0 3.0/5.0 14.8 9201 180 1.45 40 19 6.0 2.0/5.5 14.0 9340 185 1.45 40 24 6.0 2.0/5.0 12.0 9501 185 1.49 44 29 10.0 3.5/6.5 8.9 9755 190 1.49 43 28 10.0 3.0/6.0 11.8 9840 190 1.49 42 25 9.0 3.0/6.0 11.4 9900 195 1.49 41 20 9.0 2.5/5.5 11.0 9949 195 1.42 41 21 8.0 2.0/5.0 12.0 9968 198 1.42 44 26 8.0 2.0/5.0 11.0 9977 198 1.42 44 26 8.0 2.0/5.0 11.0 10 006 200 1.38 50 22 9.0 2.5/4.0 12.0 -
[1] 何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发,2023,50(6):1162-1172.HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6):1162-1172. [2] 王春生, 王哲, 张权, 等. 塔里木油田超深层钻井技术进展及难题探讨[J]. 钻采工艺,2024,47(2):59-69.WANG Chunsheng, WANG Zhe, ZHANG Quan, et al. Progress and obstacles of ultra-deep drilling technology in tarim oilfield[J]. Drilling & Production Technology, 2024, 47(2):59-69. [3] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129-136.JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2):129-136. [4] 汪海阁, 黄洪春, 毕文欣, 等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163-177.WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: Progress and prospect[J]. Natural Gas Industry, 2021, 41(8):163-177. [5] 王兆明, 温志新, 贺正军, 等. 全球近10年油气勘探新进展特点与启示[J]. 中国石油勘探,2022,27(2):27-37.WANG Zhaoming, WEN Zhixin, HE Zhengjun, et al. Characteristics and enlightenment of new progress in global oil and gas exploration in recent ten years[J]. China Petroleum Exploration, 2022, 27(2):27-37. [6] 刘锋报, 孙金声, 王建华. 国内外深井超深井钻井液技术现状及发展趋势[J]. 新疆石油天然气,2023,19(2):34-39.LIU Fengbao, SUN Jinsheng, WANG Jianhua. A global review of technical status and development trend of drilling fluids for deep and Ultra-Deep wells[J]. Xinjiang Oil & Gas, 2023, 19(2):34-39. [7] 刘锋报, 孙金声, 尹达, 等. 塔里木万米科探井垮塌机理研究及技术对策[J]. 钻井液与完井液,2024,41(6):709-718.LIU Fengbao, SUN Jinsheng, YIN Da, et al. Mechanisms of and technical measures for solving borehole wall instability in ten-thousand-meter scientific exploration wells in Tarim basin[J]. Drilling Fluid & Completion Fluid, 2024, 41(6):709-718. [8] 何恕, 王波, 陈晓飞, 等. 页岩长水平段水基钻井液封堵剂优选[J]. 重庆科技学院学报(自然科学版),2015,17(5):47-50.HE Shu, WANG Bo, CHEN Xiaofei, et al. Optimization of blocking agent for water-based drilling fluids in long horizontal shale drilling[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2015, 17(5):47-50. [9] 张现斌, 李欣, 陈安亮, 等. 钻井液用抗高温聚合物增黏剂的制备与性能评价[J]. 油田化学,2020,37(1):1-6,16.ZHANG Xianbin, LI Xin, CHEN Anliang, et al. Preparation and performance evaluation of polymeric viscosifier with thermal resistance for water-based drilling fluid[J]. Oilfield Chemistry, 2020, 37(1):1-6,16. [10] 罗源皓, 林凌, 郭拥军, 等. 纳米材料在抗高温钻井液中的应用进展[J]. 化工进展,2022,41(9):4895-4906.LUO Yuanhao, LIN Ling, GUO Yongjun, et al. Progress in the application of nanomaterials in high temperature resistant drilling fluids[J]. Chemical Industry and Engineering Progress, 2022, 41(9):4895-4906. [11] LIU F B, YIN D, SUN J S, et al. Preparation and characterization of Temperature-Sensitive gel plugging agent[J]. Gels, 2024, 10(11):742. doi: 10.3390/gels10110742 [12] YANG X Y, SHANG Z X, LIU H W, et al. Environmental-friendly salt water mud with nano-SiO2 in horizontal drilling for shale gas[J]. Journal of Petroleum Science and Engineering, 2017, 156:408-418. doi: 10.1016/j.petrol.2017.06.022 [13] MEDHI S, CHOWDHURY S, GUPTA D K, et al. An investigation on the effects of silica and copper oxide nanoparticles on rheological and fluid loss property of drilling fluids[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(1):91-101. doi: 10.1007/s13202-019-0721-y [14] 马成云, 宋碧涛, 徐同台, 等. 钻井液用纳米封堵剂研究进展[J]. 钻井液与完井液,2017,34(1):1-8. doi: 10.3969/j.issn.1001-5620.2017.01.001MA Chengyun, SONG Bitao, XU Tongtai, et al. Progresses in studying drilling fluid Nano material plugging agents[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):1-8. doi: 10.3969/j.issn.1001-5620.2017.01.001 [15] 徐哲, 孙金声, 吕开河, 等. 一种新型外柔内刚型封堵剂的研制[J]. 钻井液与完井液,2020,37(6):726-730.XU Zhe, SUN Jinsheng, LYU Kaihe, et al. Research and development of a novel internal rigid external soft plugging agent[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):726-730. [16] 于庆河, 刘涛, 吴文兵. 钻井液用纳米复合封堵剂的研制[J]. 石油工程建设,2024,50(z1):76-80.YU Qinghe, LIU Tao, WU Wenbing. Development of nano-composite plugging agent for drilling fluid[J]. Petroleum Engineering Construction, 2024, 50(z1):76-80. [17] 代锋,易刚,张婧,等. 页岩地层纳微米封堵剂封堵性评价方法[J]. 钻井液与完井液,2023,40(6):733-741.DAI Feng, YI Gang, ZHANG Jing, et al. Study on methodsof evaluating plugging capacity of nanometer and micrometer sized plugging agents for shale formations[J]. Drilling Fluid & Completion Fluid, 2023, 40(6):733-741. [18] 黄乘升,褚奇,李涛,等. 抗高温聚合物纳米微球封堵剂的合成与性能评价[J]. 钻井液与完井液,2022,39(2):139-145.HUANG Chengsheng, CHU Qi, LI Tao, et al. The synthesis and evaluation of a high temperature nano micro-spherical polymer plugging agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):139-145. [19] 罗平亚, 王路一, 白杨. 深井超深井钻井液技术应用现状及发展展望[J]. 钻采工艺,2024,47(2):10-18.LUO Pingya, WANG Luyi, BAI Yang. A review of technical status and development expectation of drilling fluids for deep and ultra-deep wells[J]. Drilling & Production Technology, 2024, 47(2):10-18. [20] 孔勇, 杨小华, 徐江, 等. 抗高温强封堵防塌钻井液体系研究与应用[J]. 钻井液与完井液,2016,33(6):17-22.KONG Yong, YANG Xiaohua, XU Jiang, et al. Study and application of a high temperature drilling fluid with strong plugging capacity[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):17-22. [21] 罗玉财,喻化民,孙昊,等. 冀中地区深层煤岩气水平井强封堵钻井液技术[J]. 钻井液与完井液,2025,42(2):225-232.LUO Yucai, YU Huamin, SUN Hao, et al. High plugging capacity drilling fluid technology for deep buried coal-bed methane drilling in Jizhong area[J]. Drilling Fluid & Completion Fluid, 2025, 42(2):225-232. [22] 贾俊,陈磊,郝超,等. 铝土岩水平井快封堵防塌钻井液技术[J]. 钻井液与完井液,2024,41(4):473-480.JIA Jun, CHEN Lei, HAO Chao, et al. Fast plugging inhibitive drilling fluid technology for horizontal drilling through bauxite rocks[J]. Drilling Fluid & Completion Fluid, 2024, 41(4):473-480. [23] 徐哲, 孙金声, 刘敬平, 等. 柔性微球封堵剂的封堵性能及机理研究[J]. 断块油气田,2024,31(6):1105-1113,1121.XU Zhe, SUN Jinsheng, LIU Jingping, et al. Research on plugging performance and mechanism of flexible microsphere plugging agent[J]. Fault-Block Oil and Gas Field, 2024, 31(6):1105-1113,1121. -