留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特深井钻井液微纳米有机封堵剂的研制及应用

刘锋报 尹达 罗绪武 孙金声 黄贤斌 吴虹宇

刘锋报,尹达,罗绪武,等. 特深井钻井液微纳米有机封堵剂的研制及应用[J]. 钻井液与完井液,2025,42(4):462-471 doi: 10.12358/j.issn.1001-5620.2025.04.004
引用本文: 刘锋报,尹达,罗绪武,等. 特深井钻井液微纳米有机封堵剂的研制及应用[J]. 钻井液与完井液,2025,42(4):462-471 doi: 10.12358/j.issn.1001-5620.2025.04.004
LIU Fengbao, YIN Da, LUO Xuwu, et al.Development and application of micro-nano organic plugging agent for ultra-deep well drilling fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(4):462-471 doi: 10.12358/j.issn.1001-5620.2025.04.004
Citation: LIU Fengbao, YIN Da, LUO Xuwu, et al.Development and application of micro-nano organic plugging agent for ultra-deep well drilling fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(4):462-471 doi: 10.12358/j.issn.1001-5620.2025.04.004

特深井钻井液微纳米有机封堵剂的研制及应用

doi: 10.12358/j.issn.1001-5620.2025.04.004
基金项目: 新疆维吾尔自治区青年拔尖人才-青年科技创新人才项目“超深层抗温240℃水基钻井液体系构建”(2024TSYCCX0061)。
详细信息
    作者简介:

    刘锋报,高级工程师,博士,1985年生,毕业于中国石油大学(华东)石油与天然气工程专业,现从事深井钻完井液技术研发和管理工作。电话(0996)2176170;E-mail:liufengbao100@126.com

  • 中图分类号: TE254.4

Development and Application of Micro-Nano Organic Plugging Agent for Ultra-Deep Well Drilling Fluids

  • 摘要: 以有机材料为水解单体,AMPS、DMAA和BA为聚合单体,通过预水解反应和自由基聚合反应两步法制备了一种抗超高温微纳米有机封堵剂(TSF)。通过热重分析显示,TSF的初始热分解温度为240℃,热稳定性优异;220℃老化前后粒径维持在342~825 nm之间,具有分散稳定性;玻璃化转变温度为192℃,能够由玻璃态转变为黏弹橡胶态,具有形变封堵性和黏结固壁性。TSF加量为4%时,220℃老化16 h后,可使钻井液基浆高温高压滤失量降低43.1%,对5 μm和10 μm陶瓷砂盘的高温高压滤失量分别降低37.1%和34.5%,表明TSF封堵降滤失效果优异;在220℃高温下无H2S气体产生,表明TSF在超高温下具有较高的安全性;220℃老化后基浆泥饼渗透率降低50.8%,黏结固壁作用可将岩心柱抗压强度提升12.6~17倍,表明TSF通过自适应充填来提高其对超深井地层孔缝的封堵及固壁性能,并在特深井A中成功应用。

     

  • 图  1  TSF的红外光谱曲线

    图  2  TSF的热重分析曲线

    图  3  TSF的DSC分析曲线

    图  4  TSF的粒径分析曲线

    图  5  基浆中加入4%不同封堵材料 高温高压滤失量实验结果

    图  6  基浆中加入4%不同封堵材料的高温封堵性能

    图  7  不同封堵材料高温老化前后在水中的分散状态

    图  8  各封堵剂老化后H2S检测结果

    图  9  TSF对泥饼渗透率影响

    图  10  泥饼老化前后表面微观形貌

    图  11  压制岩心柱单轴抗压测试

    图  12  岩心柱经TSF处理前后老化后的微观形貌

    图  13  A井不同井深地层钻屑照片

    图  14  A井高温高压泥饼照片

    图  15  A井8000~10 006 m井径数据

    注:1 in=25.4 mm。

    表  1  不同封堵剂TSF加量对钻井液基浆性能的影响

    TSF/
    %
    实验条件 AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    0 老化前 7.5 6.0 1.5 23.4
    180℃、16 h 10.5 8.0 2.5 45.0
    200℃、16 h 10.0 8.5 1.5 56.0
    220℃、16 h 9.0 8.0 1.0 65.0
    2 老化前 8.0 6.5 1.5 18.4
    180℃、16 h 10.0 8.0 2.0 35.8
    200℃、16 h 10.0 9.0 1.0 45.0
    220℃、16 h 9.0 7.5 1.5 56.4
    4 老化前 8.5 7.0 1.5 14.6
    180℃、16 h 11.0 9.0 2.0 25.6
    200℃、16 h 12.0 10.0 2.0 26.8
    220℃、16 h 10.0 9.0 1.0 30.4
    6 老化前 9.5 7.5 2.0 12.3
    180℃、16 h 12.0 10.0 2.0 22.3
    200℃、16 h 13.5 11.0 2.5 23.1
    220℃、16 h 11.0 9.5 1.5 30.3
    下载: 导出CSV

    表  2  A井使用井段钻井液性能

    井深/
    m
    T/
    ρ/
    g·cm−3
    FV/
    s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLHTHP/
    mL
    78581451.4544175.02.0/8.011.2
    79461501.4545177.02.5/10.012.0
    80571551.4542178.03.0/11.012.0
    81851651.4541226.53.0/11.010.4
    82651651.4542205.52.5/9.010.0
    84091701.4839206.04.5/13.08.4
    85121701.5256228.03.5/10.57.8
    87201751.52452312.56.5/12.58.0
    88991781.4540204.02.0/5.09.0
    89961801.4540206.52.0/6.013.2
    91001801.4541248.03.0/5.014.8
    92011801.4540196.02.0/5.514.0
    93401851.4540246.02.0/5.012.0
    95011851.49442910.03.5/6.58.9
    97551901.49432810.03.0/6.011.8
    98401901.4942259.03.0/6.011.4
    99001951.4941209.02.5/5.511.0
    99491951.4241218.02.0/5.012.0
    99681981.4244268.02.0/5.011.0
    99771981.4244268.02.0/5.011.0
    10 0062001.3850229.02.5/4.012.0
    下载: 导出CSV
  • [1] 何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发,2023,50(6):1162-1172.

    HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6):1162-1172.
    [2] 王春生, 王哲, 张权, 等. 塔里木油田超深层钻井技术进展及难题探讨[J]. 钻采工艺,2024,47(2):59-69.

    WANG Chunsheng, WANG Zhe, ZHANG Quan, et al. Progress and obstacles of ultra-deep drilling technology in tarim oilfield[J]. Drilling & Production Technology, 2024, 47(2):59-69.
    [3] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129-136.

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2):129-136.
    [4] 汪海阁, 黄洪春, 毕文欣, 等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163-177.

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: Progress and prospect[J]. Natural Gas Industry, 2021, 41(8):163-177.
    [5] 王兆明, 温志新, 贺正军, 等. 全球近10年油气勘探新进展特点与启示[J]. 中国石油勘探,2022,27(2):27-37.

    WANG Zhaoming, WEN Zhixin, HE Zhengjun, et al. Characteristics and enlightenment of new progress in global oil and gas exploration in recent ten years[J]. China Petroleum Exploration, 2022, 27(2):27-37.
    [6] 刘锋报, 孙金声, 王建华. 国内外深井超深井钻井液技术现状及发展趋势[J]. 新疆石油天然气,2023,19(2):34-39.

    LIU Fengbao, SUN Jinsheng, WANG Jianhua. A global review of technical status and development trend of drilling fluids for deep and Ultra-Deep wells[J]. Xinjiang Oil & Gas, 2023, 19(2):34-39.
    [7] 刘锋报, 孙金声, 尹达, 等. 塔里木万米科探井垮塌机理研究及技术对策[J]. 钻井液与完井液,2024,41(6):709-718.

    LIU Fengbao, SUN Jinsheng, YIN Da, et al. Mechanisms of and technical measures for solving borehole wall instability in ten-thousand-meter scientific exploration wells in Tarim basin[J]. Drilling Fluid & Completion Fluid, 2024, 41(6):709-718.
    [8] 何恕, 王波, 陈晓飞, 等. 页岩长水平段水基钻井液封堵剂优选[J]. 重庆科技学院学报(自然科学版),2015,17(5):47-50.

    HE Shu, WANG Bo, CHEN Xiaofei, et al. Optimization of blocking agent for water-based drilling fluids in long horizontal shale drilling[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2015, 17(5):47-50.
    [9] 张现斌, 李欣, 陈安亮, 等. 钻井液用抗高温聚合物增黏剂的制备与性能评价[J]. 油田化学,2020,37(1):1-6,16.

    ZHANG Xianbin, LI Xin, CHEN Anliang, et al. Preparation and performance evaluation of polymeric viscosifier with thermal resistance for water-based drilling fluid[J]. Oilfield Chemistry, 2020, 37(1):1-6,16.
    [10] 罗源皓, 林凌, 郭拥军, 等. 纳米材料在抗高温钻井液中的应用进展[J]. 化工进展,2022,41(9):4895-4906.

    LUO Yuanhao, LIN Ling, GUO Yongjun, et al. Progress in the application of nanomaterials in high temperature resistant drilling fluids[J]. Chemical Industry and Engineering Progress, 2022, 41(9):4895-4906.
    [11] LIU F B, YIN D, SUN J S, et al. Preparation and characterization of Temperature-Sensitive gel plugging agent[J]. Gels, 2024, 10(11):742. doi: 10.3390/gels10110742
    [12] YANG X Y, SHANG Z X, LIU H W, et al. Environmental-friendly salt water mud with nano-SiO2 in horizontal drilling for shale gas[J]. Journal of Petroleum Science and Engineering, 2017, 156:408-418. doi: 10.1016/j.petrol.2017.06.022
    [13] MEDHI S, CHOWDHURY S, GUPTA D K, et al. An investigation on the effects of silica and copper oxide nanoparticles on rheological and fluid loss property of drilling fluids[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(1):91-101. doi: 10.1007/s13202-019-0721-y
    [14] 马成云, 宋碧涛, 徐同台, 等. 钻井液用纳米封堵剂研究进展[J]. 钻井液与完井液,2017,34(1):1-8. doi: 10.3969/j.issn.1001-5620.2017.01.001

    MA Chengyun, SONG Bitao, XU Tongtai, et al. Progresses in studying drilling fluid Nano material plugging agents[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):1-8. doi: 10.3969/j.issn.1001-5620.2017.01.001
    [15] 徐哲, 孙金声, 吕开河, 等. 一种新型外柔内刚型封堵剂的研制[J]. 钻井液与完井液,2020,37(6):726-730.

    XU Zhe, SUN Jinsheng, LYU Kaihe, et al. Research and development of a novel internal rigid external soft plugging agent[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):726-730.
    [16] 于庆河, 刘涛, 吴文兵. 钻井液用纳米复合封堵剂的研制[J]. 石油工程建设,2024,50(z1):76-80.

    YU Qinghe, LIU Tao, WU Wenbing. Development of nano-composite plugging agent for drilling fluid[J]. Petroleum Engineering Construction, 2024, 50(z1):76-80.
    [17] 代锋,易刚,张婧,等. 页岩地层纳微米封堵剂封堵性评价方法[J]. 钻井液与完井液,2023,40(6):733-741.

    DAI Feng, YI Gang, ZHANG Jing, et al. Study on methodsof evaluating plugging capacity of nanometer and micrometer sized plugging agents for shale formations[J]. Drilling Fluid & Completion Fluid, 2023, 40(6):733-741.
    [18] 黄乘升,褚奇,李涛,等. 抗高温聚合物纳米微球封堵剂的合成与性能评价[J]. 钻井液与完井液,2022,39(2):139-145.

    HUANG Chengsheng, CHU Qi, LI Tao, et al. The synthesis and evaluation of a high temperature nano micro-spherical polymer plugging agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):139-145.
    [19] 罗平亚, 王路一, 白杨. 深井超深井钻井液技术应用现状及发展展望[J]. 钻采工艺,2024,47(2):10-18.

    LUO Pingya, WANG Luyi, BAI Yang. A review of technical status and development expectation of drilling fluids for deep and ultra-deep wells[J]. Drilling & Production Technology, 2024, 47(2):10-18.
    [20] 孔勇, 杨小华, 徐江, 等. 抗高温强封堵防塌钻井液体系研究与应用[J]. 钻井液与完井液,2016,33(6):17-22.

    KONG Yong, YANG Xiaohua, XU Jiang, et al. Study and application of a high temperature drilling fluid with strong plugging capacity[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):17-22.
    [21] 罗玉财,喻化民,孙昊,等. 冀中地区深层煤岩气水平井强封堵钻井液技术[J]. 钻井液与完井液,2025,42(2):225-232.

    LUO Yucai, YU Huamin, SUN Hao, et al. High plugging capacity drilling fluid technology for deep buried coal-bed methane drilling in Jizhong area[J]. Drilling Fluid & Completion Fluid, 2025, 42(2):225-232.
    [22] 贾俊,陈磊,郝超,等. 铝土岩水平井快封堵防塌钻井液技术[J]. 钻井液与完井液,2024,41(4):473-480.

    JIA Jun, CHEN Lei, HAO Chao, et al. Fast plugging inhibitive drilling fluid technology for horizontal drilling through bauxite rocks[J]. Drilling Fluid & Completion Fluid, 2024, 41(4):473-480.
    [23] 徐哲, 孙金声, 刘敬平, 等. 柔性微球封堵剂的封堵性能及机理研究[J]. 断块油气田,2024,31(6):1105-1113,1121.

    XU Zhe, SUN Jinsheng, LIU Jingping, et al. Research on plugging performance and mechanism of flexible microsphere plugging agent[J]. Fault-Block Oil and Gas Field, 2024, 31(6):1105-1113,1121.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  15
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-12
  • 修回日期:  2025-05-20
  • 刊出日期:  2025-07-31

目录

    /

    返回文章
    返回