A New Self-Generating Foam Workover Fluid for Low Pressure Reservoirs
-
摘要: 针对海上某常温低压低渗低含水油藏修井作业过程中修井液易对储层造成污染伤害问题,室内以防水锁型水基修井液体系为基础,并结合自生泡沫剂ZSP、润湿反转剂FZJ等主要处理剂,研制了一套适合海上低压低渗低含水油藏的清洁型低密度自生泡沫修井液体系,并对其综合性能进行了评价。结果表明:该修井液体系的基本性能良好,密度在0.5~0.9 g/cm3 之间可调,修井液与储层段地层水具有较好的配伍性,经过其处理后的天然岩心能解除近井地带润湿相伤害,变相提高油相渗透率,具有良好的储层保护效果。CH33等3口井使用清洁型低密度泡沫修井液体系修井过程顺利,未发生井下复杂事故,修井2 d后产能恢复至正常生产水平,说明该体系能够满足海上低压低渗低含水油藏的修井作业要求。Abstract: An offshore normal temperature low pressure low permeability low water cut reservoir needed to be worked over, the workover fluid can cause contamination and hence damage the reservoir. To deal with this problem, a cleaning low density self-generating foam workover fluid was developed based on an anti-water-block water-based workover fluid. A self-generating foaming agent ZSP and a wettability alteration agent FZJ etc. were used in formulating the new workover fluid. The workover fluid was evaluated for its general properties, and it was found that the workover fluid has good basic performance, its density can be adjusted between 0.5 g/cm3 and 0.9 g/cm3. The workover fluid is well compatible with the formation waters, natural cores after treatment with this workover fluid can have their wetting phase damage near the wellbore being removed, thereby improving the permeability of the oil phase in a disguised way. This cleaning low density foam workover fluid has been successfully used on three wells (well CH33 etc.), no downhole troubles occurred during operation. Two days after the workover operation, the three wells regained their normal production rates, indicating that this new workover fluid has satisfied the requirements of workover operations on offshore reservoirs with low pressure, low permeability and low water cut.
-
表 1 苯磺酰胺高分子有机物生气剂反应实验
生气剂浓度/% 10 20 30 40 50 生成气量/mL 120 330 450 480 520 表 2 发泡剂泡沫性能实验
编号 泡沫体积/mL 半衰期/s 泡沫综合值/(mL·s) FP-1 1200 489 440 100 FP-2 820 360 221 400 FP-3 700 270 141 750 FP-4 650 252 122 850 FP-5 620 247 114 855 表 3 自生泡沫体系实验
生气剂
SQJ/%发泡剂
FP-1/%稳泡剂
WPAM/%矿化度/
mg·L-1泡沫质量/
%泡沫半衰
期/min30 0.5 0.10 1×104 75 15 0.15 1×104 84 22 0.20 1×104 86 23 表 4 0.15%润湿反转剂FZJ处理实验
待测液 处理前 处理后 毛细管液面
上升高度/cm润湿
角/(°)毛细管液面
上升高度/cm润湿
角/(°)自吸油 1.6 68.1 0.15 89.3 自吸水 2.3 42.8 0.22 85.4 表 5 自生泡沫修井液体系与地层水配伍性评价
实验条件 修井液与地层水不同比例混合后浊度值/NTU 9∶1 7∶3 5∶5 3∶7 加热前 2.8 2.4 1.9 1.7 90℃、12 h 3.4 4.2 2.8 2.3 表 6 自生泡沫修井液体系封堵性能评价实验
岩心 Ko/mD 不同压差下滤失量/mL 1 MPa 3 MPa 5 MPa 7 MPa 9 MPa 11 MPa 1# 5.97 0 0 0 0.03 3.8 11.8 2# 6.41 0 0 0 0.05 4.9 15.2 3# 3.92 0 0 0 0.03 4.2 16.4 表 7 自生泡沫修井液储层保护性能评价实验
修井液 流速/(mL·min−1) 渗透率/mD 变化率/% 处理前 处理后 调整前 0.5 14.4 10.2 −29.2 1.0 18.6 13.7 −26.3 1.5 17.3 10.4 −39.9 调整后 0.5 13.5 14.9 10.4 1.0 15.7 19.8 26.1 1.5 16.2 20.4 25.9 -
[1] 张振华. 可循环微泡沫钻井液研究及应用[J]. 石油学报,2004,25(6):92-95. doi: 10.3321/j.issn:0253-2697.2004.06.019ZHANG Zhenhua. Preparation and application of circulative micro-foam drilling fluid[J]. Acta Petrolei Sinica, 2004, 25(6):92-95. doi: 10.3321/j.issn:0253-2697.2004.06.019 [2] 隋跃华, 成效华, 孙强. 可循环泡沫钻井液研究与应用[J]. 钻井液与完井液,1999(5):18-23.SUI Yuehua, CHENG Xiaohua, SUN Qiang. Research and application of recyclable foam drilling fluid[J]. Drilling fluid and completion fluid, 1999(5):18-23. [3] 宫新军, 陈建华, 成效华, 等. 超低压易漏地层钻井液新技术[J]. 石油钻探技术, 1996(4): 29, 65, 64.GONG Xinjun, CHEN Jianhua, CHENG Xiaohua, et al. New drilling fluid techniques for ultra low pressure and lost circulation formation[J]. Petroleum Drilling Techniques, 1996(4): 29, 65, 64. [4] 罗向东, 罗平亚. 屏蔽式暂堵技术在储层保护中的应用研究[J]. 钻井液与完井液,1992,9(2):19-27,1-2.LUO Xiangdong, LUO Pingya. Application research of shielding temporary plugging technology in reservoir protection[J]. Drilling and Completion Fluids, 1992, 9(2):19-27,1-2. [5] 张振华, 鄢捷年, 樊世忠. 低密度钻井流体技术[M]. 东营: 石油大学出版社, 2004.ZHANG Zhenhua, YAN Jienian, FAN Shizhong. Low density drilling fluid technology[M]. Dongying: Petroleum University Press, 2004. [6] 李中. 南海高温高压气田开发钻完井关键技术现状及展望[J]. 石油钻采工艺,2016,38(6):730-736.LI Zhong. Status and prospect of key drilling and completion technologies for the development of HTHP gasifeld in South China Sea[J]. Oil Drilling & Production Technology, 2016, 38(6):730-736. [7] 李中, 刘书杰, 李炎军, 等. 南海高温高压钻完井关键技术及工程实践[J]. 中国海上油气,2017,29(6):100-107.LI Zhong, LIU Shujie, LI Yanjun, et al. Key technology and practice of HTHP well drilling and completion in South China Sea[J]. China Offshore Oil and Gas, 2017, 29(6):100-107. [8] 黄熠. 南海高温高压勘探钻井技术现状及展望[J]. 石油钻采工艺,2016,38(6):737-745.HUANG Yi. Current status and prospects of high temperature and high pressure exploration drilling technology in the South China sea[J]. Oil Drilling & Production Technology, 2016, 38(6):737-745. [9] 罗鸣, 吴江, 陈浩东, 等. 南海西部窄安全密度窗口超高温高压钻井技 术[J]. 石油钻探技术,2019,47(1):8-12. doi: 10.11911/syztjs.2019024LUO Ming, WU Jiang, CHEN Haodong, et al. Etc narrow safety density window ultra-high temperature and high pressure drilling technology in the western South China sea[J]. Petroleum Drilling Technology, 2019, 47(1):8-12. doi: 10.11911/syztjs.2019024 [10] 黄亮, 魏安超, 王尔钧, 等. 莺歌海盆地高温高压气田完井技术[J]. 石油钻探技术,2019,47(6):21-26. doi: 10.11911/syztjs.2019098HUANG Liang, WEI Anchao, WANG Erjun, et al. Completion technologies for HTHP gas fields in the yinggehai basin[J]. Petroleum Drilling Techniques, 2019, 47(6):21-26. doi: 10.11911/syztjs.2019098 [11] 李炎军, 吴江, 黄熠, 等. 莺歌海盆地中深层高温高压钻井关键技术及其实践效果[J]. 中国海上油气,2015,27(4):102-106. doi: 10.11935/j.issn.1673-1506.2015.04.014LI Yanjun, WU Jiang, HUANG Yi, et al. Key technology and application of HTHP drilling in mid-deep formations in Yinggehai basin[J]. China Offshore Oil and Gas, 2015, 27(4):102-106. doi: 10.11935/j.issn.1673-1506.2015.04.014 -