留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐盐防膨水性乳液降阻剂合成及其性能

黄静

黄静. 耐盐防膨水性乳液降阻剂合成及其性能[J]. 钻井液与完井液,2025,42(3):406-412 doi: 10.12358/j.issn.1001-5620.2025.03.018
引用本文: 黄静. 耐盐防膨水性乳液降阻剂合成及其性能[J]. 钻井液与完井液,2025,42(3):406-412 doi: 10.12358/j.issn.1001-5620.2025.03.018
HUANG Jing.Synthesis and performance of a salt resistant swelling preventive aqueous emulsion drag reducer[J]. Drilling Fluid & Completion Fluid,2025, 42(3):406-412 doi: 10.12358/j.issn.1001-5620.2025.03.018
Citation: HUANG Jing.Synthesis and performance of a salt resistant swelling preventive aqueous emulsion drag reducer[J]. Drilling Fluid & Completion Fluid,2025, 42(3):406-412 doi: 10.12358/j.issn.1001-5620.2025.03.018

耐盐防膨水性乳液降阻剂合成及其性能

doi: 10.12358/j.issn.1001-5620.2025.03.018
基金项目: 中石化科技部项目“页岩气超级滑溜水压裂液攻关与应用”(P23193);国家科技重大专项“新一代复杂储层改造关键技术与装备”课题2“多功能型压裂液体系与高性能材料研发”(2024ZD1404702)。
详细信息
    作者简介:

    黄静,高级工程师,博士,1982年生,毕业于南开大学无机化学专业,现在从事新型压裂助剂研发工作。电话 15801050988;E-mail:eleven413@126.com

  • 中图分类号: TE357

Synthesis and Performance of a Salt Resistant Swelling Preventive Aqueous Emulsion Drag Reducer

  • 摘要: 针对常规反相乳液降阻剂耐盐性能差,难以实现高矿化度地层水或返排水配液,且降阻剂功能单一、含油相对地层造成伤害及成本高的问题,通过水相分散聚合合成无油相耐盐防膨型水性乳液降阻剂。通过摩阻仪、流变仪等对降阻剂及其形成的滑溜水体系的性能进行评价。实验结果表明,该降阻剂稳定性能好,能在15 s内迅速溶于水,阳离子度15.98%,用100 000 mg/L盐水配制对黏度几乎没有影响,耐温180℃。利用该降阻剂配制的滑溜水体系现场降阻率82%,防膨率提高60%以上,在保证了高降阻同时实现在线混配且兼具防膨性能,实现了“一剂多效”,为简化配液流程,降低成本,提高压裂生产效果的新型压裂液研发提供了新的思路。

     

  • 图  1  水包水乳液降阻剂的核磁谱图

    图  2  不同浓度水性乳液降阻剂的降阻率随剪切速率的变化规律  

    图  3  1.0%水性乳液降阻剂水溶液180℃流变性能

    图  4  1.0%水性乳液降阻剂100 000 mg/盐水溶液180℃流变性能          

    图  5  不同温度处理的降阻剂的降阻率随剪切速率的变化规律 

    图  6  SR1井反循环第2组压裂施工曲线

    表  1  水包水乳液聚合物阳离子度

    V1/L 水性乳液降
    阻剂质量/g
    阳离
    子度/%
    阳离子度
    平均值/%
    0.08790.5016.4815.98
    0.08350.5015.65
    0.08430.5015.81
    下载: 导出CSV

    表  2  水性乳液降阻剂配制的滑溜水黏度

    序号降阻剂/%η清水配制/
    mPa·s
    η盐水配制/
    mPa·s
    10.0753.03.0
    20.15010.512.0
    30.30028.531.5
    40.45052.563.0
    50.60090.097.5
    60.750126.0132.0
    71.000180.0164.0
    下载: 导出CSV

    表  3  水性乳液降阻剂配制的滑溜水防膨性能

    序号 测试对象 T/
    膨胀
    体积/mL
    防膨率
    计算/%
    1 清水 20 7.6
    2 煤油 20 0.4
    3 0.15%水性乳液降阻剂 20 3.0 63.9
    4 0.30%水性乳液降阻剂 20 3.0 63.9
    5 0.45%水性乳液降阻剂 20 2.5 70.8
    6 0.60%水性乳液降阻剂 20 2.7 68.1
    7 0.75%水性乳液降阻剂 20 2.8 66.7
    下载: 导出CSV

    表  4  不同浓度水性乳液降阻剂压裂液的破胶性能

    序号 水包水聚合
    物浓度/%
    η破胶前/
    mPa·s
    η破胶后/
    mPa·s
    1 0. 15 10.5 1.24
    2 0.30 28.5 1.96
    3 0.45 52.5 3.61
    4 0.60 90.0 4.12
    5 0.75 126.0 4.98
    下载: 导出CSV

    表  5  岩心伤害率对比结果

    降阻水 岩心基质渗透率/nD 伤害率/
    %
    技术指标/
    %
    伤害前 伤害后
    1.0%水性乳液降
    阻剂配制的降阻水
    14.34 12.47 13.04 ≤20
    下载: 导出CSV
  • [1] 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探,2020,25(2):1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001

    LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2):1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001
    [2] 郭威, 潘继平. “十三五”全国油气资源勘查开采规划执行情况中期评估与展望[J]. 天然气工业,2019,39(4):111-117. doi: 10.3787/j.issn.1000-0976.2019.04.015

    GUO Wei, PAN Jiping. Mid-term evaluation and prospect of the implementation of the 13th Five-Year Plan for the National Oil and Gas Resources Exploration and Mining Plan[J]. Natural Gas Industry, 2019, 39(4):111-117. doi: 10.3787/j.issn.1000-0976.2019.04.015
    [3] 渠沛然. 我国原油对外依存度首次下降[N]. 中国能源报. 2022-02-21(14).
    [4] 刘宇峰, 刘迪仁, 彭成, 等. 中国页岩气勘探开发现状及关键技术进展[J]. 现代化工,2022,42(1):16-20.

    LIU Yufeng, LIU Diren, PENG Cheng, et al. China's development status of shale gas and progress in key technology research[J]. Modern chemical industry, 2022, 42(1):16-20.
    [5] WANG Y, MISKIMINS J L. Experimental investigations of hydraulic fracture growth complexity in slickwater fracturing treatments[C]//Paper presented at the Tight Gas Completions Conference, San Antonio, Texas, USA, 2010: SPE-137515-MS.
    [6] ALFARGE D, WEI M Z, BAI B J. Evaluating the performance of hydraulic-fractures in unconventional reservoirs using production data: Comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2019, 61:133-141. doi: 10.1016/j.jngse.2018.11.002
    [7] SUN H, WOOD B, STEVENS R, et al. A nondamaging friction reducer for slickwater Frac applications[C]//Paper presented at the SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA, 2011: SPE-139480-MS.
    [8] 李永飞, 王彦玲, 曹勋臣, 等. 页岩储层压裂用减阻剂的研究及应用进展[J]. 精细化工,2018,35(1):1-9.

    LI Yongfei, WANG Yanling, CAO Xunchen, et al. Progress in research and application of drag reducer for shale reservoir fracturing[J]. Fine Chemicals, 2018, 35(1):1-9.
    [9] 姚奕明, 魏娟明, 杜涛, 等. 深层页岩气压裂滑溜水技术研究与应用[J]. 精细石油化工,2019,36(4):15-19. doi: 10.3969/j.issn.1003-9384.2019.04.004

    YAO Yiming, WEI Juanming, DU Tao, et al. Research and application of deep shale gas fracturing slick-water technology[J]. Speciality Petrochemicals, 2019, 36(4):15-19. doi: 10.3969/j.issn.1003-9384.2019.04.004
    [10] 龙学莉, 叶智, 程晓亮, 等. 减阻剂体系的室内研究及应用[J]. 当代化工,2015,44(11):2563-2565. doi: 10.3969/j.issn.1671-0460.2015.11.021

    LONG Xueli, YE Zhi, CHENG Xiaoliang, et al. Indoor research and application of the drag reducing agent system[J]. Contemporary Chemical Industry, 2015, 44(11):2563-2565. doi: 10.3969/j.issn.1671-0460.2015.11.021
    [11] 魏娟明, 刘建坤, 杜凯, 等. 反相乳液型减阻剂及滑溜水体系的研发与应用[J]. 石油钻探技术,2015,43(1):27-32. doi: 10.11911/syztjs.201501005

    WEI Juanming, LIU Jiankun, DU Kai, et al. The development and application of inverse emulsified friction reducer and slickwater system[J]. Petroleum Drilling Techniques, 2015, 43(1):27-32. doi: 10.11911/syztjs.201501005
    [12] JOHNER A, JOANNY J F. Adsorption of polymeric brushes: bridging[J]. Journal of Chemical Physics, 1992, 96(8):6257-6273. doi: 10.1063/1.462617
    [13] LIU B Y H, PUI D Y H. Electrical neutralization of aerosols[J]. Journal of Aerosol Science, 1974, 5(5):465-472. doi: 10.1016/0021-8502(74)90086-X
    [14] SOLBERG D, WÅGBERG L. Adsorption and flocculation behavior of cationic polyacrylamide and colloidal silica[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2003, 219(1/3):161-172.
    [15] ABDELKADER R, MOHAMMED B. Green synthesis of cationic polyacrylamide composite catalyzed by an ecologically catalyst clay called Maghnite-H+(algerian MMT)under microwave irradiation[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2016, 11(2):170-175.
    [16] WU W B, LIU B, ZHOU X F, et al. Preparation and application of hydrophobically associating cationic polyacrylamide[J]. Advanced Materials Research, 2011, 284/286:1808-1814. doi: 10.4028/www.scientific.net/AMR.284-286.1808
    [17] 杨博. 阳离子聚丙烯酰胺水包水乳液合成条件的研究[J]. 当代化工,2018,47(7):1346-1349. doi: 10.3969/j.issn.1671-0460.2018.07.009

    YANG Bo. Study on preparation conditions of cationic polyacrylamide Water-in-Water emulsion[J]. Contemporary Chemical Industry, 2018, 47(7):1346-1349. doi: 10.3969/j.issn.1671-0460.2018.07.009
    [18] RAZALI M A A, AHMAD Z, AHMAD M S B, et al. Treatment of pulp and paper mill waste-water with various molecular weight of polydadmac induced flocculation[J]. Chemical Engineering Journal, 2011, 166(2):529-535. doi: 10.1016/j.cej.2010.11.011
    [19] 张宏伟, 赖秋杰, 肖欣蓉. 原位聚合纳米SiO2法超支化CPAM的制备及其对纸张的增强作用[J]. 中国造纸,2016,35(5):11-15

    ZHANG Hongwei, LAI Qiujie, XIAO Xinrong. Preparation of nano-SiO2 modified branched cationic polyacrylamide and its application as paper strengthening agent[J]. China Pulp & Paper, 2016, 35(5):11-15.
    [20] 冯玉军, 吕永利, 李晓军, 等. 聚丙烯酰胺“水包水”乳液”: 一类环境友好的水溶性聚合物新材料[J]. 应用科技,2009,17(6):11-15.

    FENG Yujun, LYU Yongli, LI Xiaojun, et al. Polyacrylamide based "water-in-water" emulsion: a novel environmental-friendly polymeric material[J]. Applied Science and Technology, 2009, 17(6):11-15.
    [21] LEE K E, MORAD N, TENG T T, et al. Development, charac-terization and the application of hybrid materials in coagulation/flocculation of wastewater: a review[J]. Chemical Engineering Journal, 2012, 203:370-386. doi: 10.1016/j.cej.2012.06.109
    [22] 杨博, 孙宾宾. 阳离子聚丙烯酰胺水包水乳液合成[J]. 当代化工,2018,47(3):491-493,497 doi: 10.3969/j.issn.1671-0460.2018.03.013

    YANG Bo, SUN Binbin. Synthesis of cationic polyacrylamide water-in-water emulsion[J]. Contemporary Chemical Industry, 2018, 47(3):491-493,497. doi: 10.3969/j.issn.1671-0460.2018.03.013
    [23] 来水利, 杨宁. 阳离子聚丙烯酰胺絮凝剂的研制[J]. 应用化工,2011,40(5):860-863. doi: 10.3969/j.issn.1671-3206.2011.05.034

    LAI Shuili, YANG Ning. Investigation of cationic PAM coagulant[J]. Applied Chemical Industry, 2011, 40(5):860-863. doi: 10.3969/j.issn.1671-3206.2011.05.034
    [24] RABIEE A, ERSHAD-LANGROUDI A, ZEYNALI M E. A survey on cationic polyelectrolytes and their applications: acrylamide derivatives[J]. Reviews in Chemical Engineering, 2015, 31(3):239-261.
    [25] 叶小闯, 王晓明, 李勇涛, 等. 水平井体积压裂技术在苏里格气田应用效果评价[J]. 石油化工应用,2016,35(4):47-51. doi: 10.3969/j.issn.1673-5285.2016.04.012

    YE Xiaochuang, WANG Xiaoming, LI Yongtao, et al. Evaluation of horizontal well volume fracturing technology application in Sulige gas field[J]. Petrochemical Industry Application, 2016, 35(4):47-51. doi: 10.3969/j.issn.1673-5285.2016.04.012
    [26] 李飒爽, 李士斌. 页岩气储层体积压裂改造体积影响因素分析[J]. 当代化工,2016,45(4):749-751,755. doi: 10.3969/j.issn.1671-0460.2016.04.028

    LI Sashuang, LI Shibin. Analysis on influencing factors of stimulated reservoir volume during volume fracturing Reconstruction of shale gas reservoir[J]. Contemporary Chemical Industry, 2016, 45(4):749-751,755. doi: 10.3969/j.issn.1671-0460.2016.04.028
    [27] 郑力会, 魏攀峰. 页岩气储层伤害30年研究成果回顾[J]. 石油钻采工艺,2013(4):1-16. doi: 10.3969/j.issn.1000-7393.2013.04.001

    ZHENG Lihui, WEI Panfeng. Review to shale gas formation damage for 30 years ZHENG Lihui1, 2, WEI Panfeng1[J]. Oil Drilling & Production Technology, 2013(4):1-16. doi: 10.3969/j.issn.1000-7393.2013.04.001
    [28] 夏晨. 基于有机硼交联剂的胍胶压裂液的研制及评价[D]. 抚顺: 辽宁石油化工大学, 2020.

    XIA Chen. Development and evaluation of guanidine gum fracturing fluid based on organic boron cross-linking agent[D]. Fushun: Liaoning Shiyou University, 2020.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-24
  • 修回日期:  2025-01-19
  • 刊出日期:  2025-06-12

目录

    /

    返回文章
    返回