Synthesis and Performance of a Salt Resistant Swelling Preventive Aqueous Emulsion Drag Reducer
-
摘要: 针对常规反相乳液降阻剂耐盐性能差,难以实现高矿化度地层水或返排水配液,且降阻剂功能单一、含油相对地层造成伤害及成本高的问题,通过水相分散聚合合成无油相耐盐防膨型水性乳液降阻剂。通过摩阻仪、流变仪等对降阻剂及其形成的滑溜水体系的性能进行评价。实验结果表明,该降阻剂稳定性能好,能在15 s内迅速溶于水,阳离子度15.98%,用100 000 mg/L盐水配制对黏度几乎没有影响,耐温180℃。利用该降阻剂配制的滑溜水体系现场降阻率82%,防膨率提高60%以上,在保证了高降阻同时实现在线混配且兼具防膨性能,实现了“一剂多效”,为简化配液流程,降低成本,提高压裂生产效果的新型压裂液研发提供了新的思路。Abstract: Common inverse emulsion drag reducers have poor salt resistance and hence are unable to be formulated with high salinity formation water and water flowed back in formation fracturing operations. These drag reducers are generally single-functioned, expensive and contain oil phase that causes formation damage. To solve these problems, a new salt-resistant swelling-preventive oil-free aqueous emulsion drag reducer has been developed through aqueous dispersion polymerization. Laboratory evaluation with friction tester and rheometer of the new drag reducer in a slick water system showed that this drag reducer has good stability, and is able to instantly dissolve in water in 15 seconds. The cationicity of the drag reducer is 15.98%. A fracturing fluid formulated with 100,000 mg/L saltwater has viscosity that is not affected by the high salinity of the saltwater. The drag reducer works normally at temperatures up to 180℃. A slick water formulated with this drag reducer was used in field operation, the drag of the slick water was reduced by 82% and swelling inhibition capacity was enhanced by at least 60%. With this drag reducer, high drag reduction rate, online formulation and clay swelling inhibition can be simultaneously achieved, the so-called “one additive with multifunction”. This study has provided a new clue for simplifying fracturing fluid formulation process, lowering operation cost and developing new fracturing fluids with enhanced fracturing efficiencies.
-
Key words:
- Salt resistant drag reducer /
- Swelling prevention /
- Dispersion polymerization /
- Slick water /
- Acrylamide
-
表 1 水包水乳液聚合物阳离子度
V1/L 水性乳液降
阻剂质量/g阳离
子度/%阳离子度
平均值/%0.0879 0.50 16.48 15.98 0.0835 0.50 15.65 0.0843 0.50 15.81 表 2 水性乳液降阻剂配制的滑溜水黏度
序号 降阻剂/% η清水配制/
mPa·sη盐水配制/
mPa·s1 0.075 3.0 3.0 2 0.150 10.5 12.0 3 0.300 28.5 31.5 4 0.450 52.5 63.0 5 0.600 90.0 97.5 6 0.750 126.0 132.0 7 1.000 180.0 164.0 表 3 水性乳液降阻剂配制的滑溜水防膨性能
序号 测试对象 T/
℃膨胀
体积/mL防膨率
计算/%1 清水 20 7.6 2 煤油 20 0.4 3 0.15%水性乳液降阻剂 20 3.0 63.9 4 0.30%水性乳液降阻剂 20 3.0 63.9 5 0.45%水性乳液降阻剂 20 2.5 70.8 6 0.60%水性乳液降阻剂 20 2.7 68.1 7 0.75%水性乳液降阻剂 20 2.8 66.7 表 4 不同浓度水性乳液降阻剂压裂液的破胶性能
序号 水包水聚合
物浓度/%η破胶前/
mPa·sη破胶后/
mPa·s1 0. 15 10.5 1.24 2 0.30 28.5 1.96 3 0.45 52.5 3.61 4 0.60 90.0 4.12 5 0.75 126.0 4.98 表 5 岩心伤害率对比结果
降阻水 岩心基质渗透率/nD 伤害率/
%技术指标/
%伤害前 伤害后 1.0%水性乳液降
阻剂配制的降阻水14.34 12.47 13.04 ≤20 -
[1] 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探,2020,25(2):1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2):1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001 [2] 郭威, 潘继平. “十三五”全国油气资源勘查开采规划执行情况中期评估与展望[J]. 天然气工业,2019,39(4):111-117. doi: 10.3787/j.issn.1000-0976.2019.04.015GUO Wei, PAN Jiping. Mid-term evaluation and prospect of the implementation of the 13th Five-Year Plan for the National Oil and Gas Resources Exploration and Mining Plan[J]. Natural Gas Industry, 2019, 39(4):111-117. doi: 10.3787/j.issn.1000-0976.2019.04.015 [3] 渠沛然. 我国原油对外依存度首次下降[N]. 中国能源报. 2022-02-21(14). [4] 刘宇峰, 刘迪仁, 彭成, 等. 中国页岩气勘探开发现状及关键技术进展[J]. 现代化工,2022,42(1):16-20.LIU Yufeng, LIU Diren, PENG Cheng, et al. China's development status of shale gas and progress in key technology research[J]. Modern chemical industry, 2022, 42(1):16-20. [5] WANG Y, MISKIMINS J L. Experimental investigations of hydraulic fracture growth complexity in slickwater fracturing treatments[C]//Paper presented at the Tight Gas Completions Conference, San Antonio, Texas, USA, 2010: SPE-137515-MS. [6] ALFARGE D, WEI M Z, BAI B J. Evaluating the performance of hydraulic-fractures in unconventional reservoirs using production data: Comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2019, 61:133-141. doi: 10.1016/j.jngse.2018.11.002 [7] SUN H, WOOD B, STEVENS R, et al. A nondamaging friction reducer for slickwater Frac applications[C]//Paper presented at the SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA, 2011: SPE-139480-MS. [8] 李永飞, 王彦玲, 曹勋臣, 等. 页岩储层压裂用减阻剂的研究及应用进展[J]. 精细化工,2018,35(1):1-9.LI Yongfei, WANG Yanling, CAO Xunchen, et al. Progress in research and application of drag reducer for shale reservoir fracturing[J]. Fine Chemicals, 2018, 35(1):1-9. [9] 姚奕明, 魏娟明, 杜涛, 等. 深层页岩气压裂滑溜水技术研究与应用[J]. 精细石油化工,2019,36(4):15-19. doi: 10.3969/j.issn.1003-9384.2019.04.004YAO Yiming, WEI Juanming, DU Tao, et al. Research and application of deep shale gas fracturing slick-water technology[J]. Speciality Petrochemicals, 2019, 36(4):15-19. doi: 10.3969/j.issn.1003-9384.2019.04.004 [10] 龙学莉, 叶智, 程晓亮, 等. 减阻剂体系的室内研究及应用[J]. 当代化工,2015,44(11):2563-2565. doi: 10.3969/j.issn.1671-0460.2015.11.021LONG Xueli, YE Zhi, CHENG Xiaoliang, et al. Indoor research and application of the drag reducing agent system[J]. Contemporary Chemical Industry, 2015, 44(11):2563-2565. doi: 10.3969/j.issn.1671-0460.2015.11.021 [11] 魏娟明, 刘建坤, 杜凯, 等. 反相乳液型减阻剂及滑溜水体系的研发与应用[J]. 石油钻探技术,2015,43(1):27-32. doi: 10.11911/syztjs.201501005WEI Juanming, LIU Jiankun, DU Kai, et al. The development and application of inverse emulsified friction reducer and slickwater system[J]. Petroleum Drilling Techniques, 2015, 43(1):27-32. doi: 10.11911/syztjs.201501005 [12] JOHNER A, JOANNY J F. Adsorption of polymeric brushes: bridging[J]. Journal of Chemical Physics, 1992, 96(8):6257-6273. doi: 10.1063/1.462617 [13] LIU B Y H, PUI D Y H. Electrical neutralization of aerosols[J]. Journal of Aerosol Science, 1974, 5(5):465-472. doi: 10.1016/0021-8502(74)90086-X [14] SOLBERG D, WÅGBERG L. Adsorption and flocculation behavior of cationic polyacrylamide and colloidal silica[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2003, 219(1/3):161-172. [15] ABDELKADER R, MOHAMMED B. Green synthesis of cationic polyacrylamide composite catalyzed by an ecologically catalyst clay called Maghnite-H+(algerian MMT)under microwave irradiation[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2016, 11(2):170-175. [16] WU W B, LIU B, ZHOU X F, et al. Preparation and application of hydrophobically associating cationic polyacrylamide[J]. Advanced Materials Research, 2011, 284/286:1808-1814. doi: 10.4028/www.scientific.net/AMR.284-286.1808 [17] 杨博. 阳离子聚丙烯酰胺水包水乳液合成条件的研究[J]. 当代化工,2018,47(7):1346-1349. doi: 10.3969/j.issn.1671-0460.2018.07.009YANG Bo. Study on preparation conditions of cationic polyacrylamide Water-in-Water emulsion[J]. Contemporary Chemical Industry, 2018, 47(7):1346-1349. doi: 10.3969/j.issn.1671-0460.2018.07.009 [18] RAZALI M A A, AHMAD Z, AHMAD M S B, et al. Treatment of pulp and paper mill waste-water with various molecular weight of polydadmac induced flocculation[J]. Chemical Engineering Journal, 2011, 166(2):529-535. doi: 10.1016/j.cej.2010.11.011 [19] 张宏伟, 赖秋杰, 肖欣蓉. 原位聚合纳米SiO2法超支化CPAM的制备及其对纸张的增强作用[J]. 中国造纸,2016,35(5):11-15ZHANG Hongwei, LAI Qiujie, XIAO Xinrong. Preparation of nano-SiO2 modified branched cationic polyacrylamide and its application as paper strengthening agent[J]. China Pulp & Paper, 2016, 35(5):11-15. [20] 冯玉军, 吕永利, 李晓军, 等. 聚丙烯酰胺“水包水”乳液”: 一类环境友好的水溶性聚合物新材料[J]. 应用科技,2009,17(6):11-15.FENG Yujun, LYU Yongli, LI Xiaojun, et al. Polyacrylamide based "water-in-water" emulsion: a novel environmental-friendly polymeric material[J]. Applied Science and Technology, 2009, 17(6):11-15. [21] LEE K E, MORAD N, TENG T T, et al. Development, charac-terization and the application of hybrid materials in coagulation/flocculation of wastewater: a review[J]. Chemical Engineering Journal, 2012, 203:370-386. doi: 10.1016/j.cej.2012.06.109 [22] 杨博, 孙宾宾. 阳离子聚丙烯酰胺水包水乳液合成[J]. 当代化工,2018,47(3):491-493,497 doi: 10.3969/j.issn.1671-0460.2018.03.013YANG Bo, SUN Binbin. Synthesis of cationic polyacrylamide water-in-water emulsion[J]. Contemporary Chemical Industry, 2018, 47(3):491-493,497. doi: 10.3969/j.issn.1671-0460.2018.03.013 [23] 来水利, 杨宁. 阳离子聚丙烯酰胺絮凝剂的研制[J]. 应用化工,2011,40(5):860-863. doi: 10.3969/j.issn.1671-3206.2011.05.034LAI Shuili, YANG Ning. Investigation of cationic PAM coagulant[J]. Applied Chemical Industry, 2011, 40(5):860-863. doi: 10.3969/j.issn.1671-3206.2011.05.034 [24] RABIEE A, ERSHAD-LANGROUDI A, ZEYNALI M E. A survey on cationic polyelectrolytes and their applications: acrylamide derivatives[J]. Reviews in Chemical Engineering, 2015, 31(3):239-261. [25] 叶小闯, 王晓明, 李勇涛, 等. 水平井体积压裂技术在苏里格气田应用效果评价[J]. 石油化工应用,2016,35(4):47-51. doi: 10.3969/j.issn.1673-5285.2016.04.012YE Xiaochuang, WANG Xiaoming, LI Yongtao, et al. Evaluation of horizontal well volume fracturing technology application in Sulige gas field[J]. Petrochemical Industry Application, 2016, 35(4):47-51. doi: 10.3969/j.issn.1673-5285.2016.04.012 [26] 李飒爽, 李士斌. 页岩气储层体积压裂改造体积影响因素分析[J]. 当代化工,2016,45(4):749-751,755. doi: 10.3969/j.issn.1671-0460.2016.04.028LI Sashuang, LI Shibin. Analysis on influencing factors of stimulated reservoir volume during volume fracturing Reconstruction of shale gas reservoir[J]. Contemporary Chemical Industry, 2016, 45(4):749-751,755. doi: 10.3969/j.issn.1671-0460.2016.04.028 [27] 郑力会, 魏攀峰. 页岩气储层伤害30年研究成果回顾[J]. 石油钻采工艺,2013(4):1-16. doi: 10.3969/j.issn.1000-7393.2013.04.001ZHENG Lihui, WEI Panfeng. Review to shale gas formation damage for 30 years ZHENG Lihui1, 2, WEI Panfeng1[J]. Oil Drilling & Production Technology, 2013(4):1-16. doi: 10.3969/j.issn.1000-7393.2013.04.001 [28] 夏晨. 基于有机硼交联剂的胍胶压裂液的研制及评价[D]. 抚顺: 辽宁石油化工大学, 2020.XIA Chen. Development and evaluation of guanidine gum fracturing fluid based on organic boron cross-linking agent[D]. Fushun: Liaoning Shiyou University, 2020. -