留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

清除井壁滤饼提高固井质量的冲洗液性能影响研究

吴彦先 赵增新 巩加芹 张浩 吴宝康 张辉 李军 李芷琦

吴彦先,赵增新,巩加芹,等. 清除井壁滤饼提高固井质量的冲洗液性能影响研究[J]. 钻井液与完井液,2025,42(3):398-405 doi: 10.12358/j.issn.1001-5620.2025.03.017
引用本文: 吴彦先,赵增新,巩加芹,等. 清除井壁滤饼提高固井质量的冲洗液性能影响研究[J]. 钻井液与完井液,2025,42(3):398-405 doi: 10.12358/j.issn.1001-5620.2025.03.017
WU Yanxian, ZHAO Zengxin, GONG Jiaqin, et al.Study on factors affecting properties of flushing fluids for removing mud cakes to improve well cementing quality[J]. Drilling Fluid & Completion Fluid,2025, 42(3):398-405 doi: 10.12358/j.issn.1001-5620.2025.03.017
Citation: WU Yanxian, ZHAO Zengxin, GONG Jiaqin, et al.Study on factors affecting properties of flushing fluids for removing mud cakes to improve well cementing quality[J]. Drilling Fluid & Completion Fluid,2025, 42(3):398-405 doi: 10.12358/j.issn.1001-5620.2025.03.017

清除井壁滤饼提高固井质量的冲洗液性能影响研究

doi: 10.12358/j.issn.1001-5620.2025.03.017
基金项目: 中石油股份有限公司科研项目“深地煤岩气成藏理论与效益开发技术研究”(2023ZZ18)。
详细信息
    作者简介:

    吴彦先,高级工程师,1989年生,现从事固完井技术方面的研究。E-mail:wuyanxian@petrochina.com.cn

    通讯作者:

    张辉,E-mail:zhanghuidrill@163.com

  • 中图分类号: TE256.7

Study on Factors Affecting Properties of Flushing Fluids for Removing Mud Cakes to Improve Well Cementing Quality

  • 摘要: 在钻井过程中未被清除的井壁滤饼严重影响第二界面的胶结质量,导致固井质量变差。当前提高固井质量的研究多以替净钻井液为目的,未考虑井壁滤饼的影响。为了提高固井质量,考虑冲洗液对钻井液的调节作用,建立了三维偏心环空中隔离液、钻井液和滤饼的3种赫巴流体流动模型,系统研究了受冲洗液调节后的钻井液密度、稠度系数、流性指数以及动切力变化对钻井液和滤饼冲洗效率的影响。结果表明,减小冲洗液的密度和流变参数,能够提高钻井液的冲洗效率,但是会使滤饼的冲洗效率降低。冲洗液的密度和流变参数不是越小越好,在保证钻井液高冲洗效率的情况下,适当增大冲洗液的密度和流变参数,使钻井液保留较高的黏度和切力,有利于促进井壁滤饼去除。优先调控冲洗液的流性指数,使钻井液的的流性指数达到理想值,会显著提高固井质量。研究结果可为优化冲洗液性能参数,为提高固井质量提供理论指导。

     

  • 图  1  隔离液冲洗过程示意图

    图  2  钻井液密度对滤饼冲洗效率影响云图

    图  3  钻井液密度对滤饼和钻井液冲洗效率的影响曲线

    图  4  钻井液稠度系数对滤饼冲洗效率影响云图

    图  5  钻井液稠度系数对滤饼和钻井液冲洗效率的影响曲线图

    图  6  钻井液动切力对滤饼冲洗效率影响云图

    图  7  钻井液动切力对滤饼和钻井液冲洗效率的影响曲线图

    图  8  钻井液流性指数对滤饼冲洗效率影响云图

    图  9  钻井液流性指数对滤饼和钻井液冲洗效率的影响

    图  10  钻井液性能工程参数敏感度分析图

    表  1  井筒流体性能工程参数表

    流体类型 ${\tau _0}$/Pa $ n $ $ K $/$ \mathrm{P}\mathrm{a}\cdot {\mathrm{s}}^{n} $ $ \rho\mathrm{_d} $/(g·cm−3 $ {L}_{\mathrm{C}} $/mm
    钻井液 6.53 0.45 1.59 1.35
    隔离液 4.20 0.72 0.60 1.42
    滤饼 23.50 0.45 1.59 2.17 3
    下载: 导出CSV
  • [1] 余海豪, 徐兆刚, 杨浩, 等. 固井水泥浆环空顶替效率研究[J]. 非常规油气,2022,9(2):119-124.

    YU Haihao, XU Zhaogang, YANG Hao, et al. Research on the annular displacement efficiency of cement slurry[J]. Unconventional Oil & Gas, 2022, 9(2):119-124.
    [2] 李建山, 李明忠, 方群, 等. 注水泥顶替环空钻井液滞留角度优化计算[J]. 钻采工艺,2014,37(6):39-41. doi: 10.3969/J.ISSN.1006-768X.2014.06.12

    LI Jianshan, LI Mingzhong, FANG Qun, et al. Optimal calculation on drilling fluid retention angle in eccentric annulus during cementing displacement[J]. Drilling & Production Technology, 2014, 37(6):39-41. doi: 10.3969/J.ISSN.1006-768X.2014.06.12
    [3] 方春飞, 周仕明, 李根生, 等. 井径不规则性对固井顶替效率影响规律研究[J]. 石油机械,2016,44(10):1-5.

    FANG Chunfei, ZHOU Shiming, LI Gensheng, et al. Study on influence law of borehole rugosity on cementing displacement efficiency[J]. China Petroleum Machinery, 2016, 44(10):1-5.
    [4] 马越, 王宏彦, 孙巧雷, 等. 小间隙偏心环空注水泥顶替效率研究[J]. 石油机械,2022,50(6):22-28.

    MA Yue, WANG Hongyan, SUN Qiaolei, et al. Displacement efficiency of cementing in eccentric annulus with small clearance[J]. China Petroleum Machinery, 2022, 50(6):22-28.
    [5] 李照川. 清除水基滤饼提高第二界面胶结质量的绒囊冲洗液研究[D]. 北京: 中国石油大学(北京), 2023.

    LI Zhaochuan. Study on fuzzy-ball preflush for removing water-based filter cake to enhance the second interface cementing quality[D]. Beijing: China University of Petroleum(Beijing), 2023.
    [6] WEI K, YAN Z F, XIONG Q S, et al. Phase-field simulation of slurry displacement efficiency in borehole with a sudden contraction or expansion[J]. Journal of Petroleum Science and Engineering, 2021, 196:107854.
    [7] 侯学文, 冯定, 张斌, 等. 套损井贴堵窄间隙固井顶替分析研究[J]. 石油机械,2023,51(12):58-65,105.

    HOU Xuewen, FENG Ding, ZHANG Bin, et al. Cementing displacement analysis of narrow annulus in casing-damaged wells repaired with pachting-plugging pipes[J]. China Petroleum Machinery, 2023, 51(12):58-65,105.
    [8] PKS S, YERUBANDI K B. Slim-Well completions: a 3D numerical approach for displacement to design effective cementing fluids[C]//Trinidad and Tobago Energy Resources Conference, 2010, SPE TT 2010.

    PKS S, YERUBANDI K B. Slim-Well completions: a 3D numerical approach for displacement to design effective cementing fluids[C]//Trinidad and Tobago Energy Resources Conference, 2010, SPE TT 2010.
    [9] LI Y J, WANG Z G, AO K W, et al. Study on cementing displacement efficiency of highly deviated wells in tarim oilfield[C]//Proceedings of the International Field Exploration and Development Conference 2023: Springer Nature Singapore, 2024: 1233-1244.
    [10] 王涛, 展转盈, 燕迎飞. 注水泥环空动态顶替界面长距离数值模拟[J]. 非常规油气,2018,5(6):87-93. doi: 10.3969/j.issn.2095-8471.2018.06.015

    WANG Tao, ZHAN Zhuaiying, YAN Yingfei. Numerical simulation on dynamic displacement interface in the process of cementing in annulus[J]. Unconventional Oil & Gas, 2018, 5(6):87-93. doi: 10.3969/j.issn.2095-8471.2018.06.015
    [11] 孙宁, 秦文贵, 张镇. 钻井手册第二版[M]. 北京: 北京工业出版社, 2013.

    SUN Ning, QIN Wengui, ZHANG Zhen. Drilling manual second edition[M]. Beijing: Beijing Industrial Press, 2013.
    [12] 陈浩东, 杨仲涵, 李文拓, 等. 不同井斜角下的偏心环空固井顶替规律[J]. 矿产勘查,2021,12(9):1953-1958. doi: 10.3969/j.issn.1674-7801.2021.09.012

    CHEN Haodong, YANG Zhonghan, LI Wentuo, et al. Cementing displacement law of eccentric annulus at different well inclination angles[J]. Mineral Exploration, 2021, 12(9):1953-1958. doi: 10.3969/j.issn.1674-7801.2021.09.012
    [13] 杨谋, 赵鹏超, 赵文奎, 等. 页岩气水平井套管偏心条件下注水泥全过程压力动态预测[J]. 新疆石油天然气,2023,19(4):42-48.

    YANG Mou, ZHAO Pengchao, ZHAO Wenkui, et al. Dynamic prediction of cementing pressure through the whole process under eccentric casing conditions in shale gas horizontal wells[J]. Xinjiang Oil & Gas, 2023, 19(4):42-48.
    [14] 陆海瑛, 冯巍, 赵俊, 等. 考虑壁面滑移效应的水基微泡沫钻井液流变特性[J]. 新疆石油天然气,2021,17(4):8-14. doi: 10.3969/j.issn.1673-2677.2021.04.003

    LU Haiying, FENG Wei, ZHAO Jun, et al. Rheological properties of water based micro foam drilling fluids considering the wall slip effect[J]. Xinjiang Oil & Gas, 2021, 17(4):8-14. doi: 10.3969/j.issn.1673-2677.2021.04.003
    [15] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.

    WANG Fujun. Computational fluid dynamics analysis-principles and applications of CFD software[M]. Beijing: Tsinghua University Press, 2004.
    [16] 魏淑惠, 朱云伟, 赵艳红. 赫-巴流体偏心环空紊流的数值模拟[J]. 科学技术与工程,2011,11(21):5172-5175,5195. doi: 10.3969/j.issn.1671-1815.2011.21.048

    WEI Shuhui, ZHU Yunwei, ZHAO Yanhong. Numerical simulation of herschel-bulkley fluid turbulence flow in eccentric annulus[J]. Science Technology and Engineering, 2011, 11(21):5172-5175,5195. doi: 10.3969/j.issn.1671-1815.2011.21.048
    [17] LI Z C, SU G D, ZHENG L H. Enhancing filter cake removal by engineering parameter optimization for clean development of fossil Hydrogen energy: A numerical simulation[J]. International Journal of Hydrogen Energy, 2021, 46(24):12784-12800.
    [18] FRIGAARD I A, PASO K G,DE SOUZA MENDES P R. Bingham's model in the oil and gas industry[J]. Rheologica Acta, 2017, 56(3):259-282.
    [19] 王常斌, 陈海波, 徐洋, 等. 赫-巴流体同心环空流动的数值模拟[J]. 科学技术与工程,2011,11(28):6798-6801. doi: 10.3969/j.issn.1671-1815.2011.28.003

    WANG Changbin, CHEN Haibo, XU Yang, et al. Numerical simulation of Herschel-Bulkley fluid concentric annulus flow[J]. Science Technology and Engineering, 2011, 11(28):6798-6801. doi: 10.3969/j.issn.1671-1815.2011.28.003
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 修回日期:  2025-02-23
  • 刊出日期:  2025-06-12

目录

    /

    返回文章
    返回