Study on Factors Affecting Properties of Flushing Fluids for Removing Mud Cakes to Improve Well Cementing Quality
-
摘要: 在钻井过程中未被清除的井壁滤饼严重影响第二界面的胶结质量,导致固井质量变差。当前提高固井质量的研究多以替净钻井液为目的,未考虑井壁滤饼的影响。为了提高固井质量,考虑冲洗液对钻井液的调节作用,建立了三维偏心环空中隔离液、钻井液和滤饼的3种赫巴流体流动模型,系统研究了受冲洗液调节后的钻井液密度、稠度系数、流性指数以及动切力变化对钻井液和滤饼冲洗效率的影响。结果表明,减小冲洗液的密度和流变参数,能够提高钻井液的冲洗效率,但是会使滤饼的冲洗效率降低。冲洗液的密度和流变参数不是越小越好,在保证钻井液高冲洗效率的情况下,适当增大冲洗液的密度和流变参数,使钻井液保留较高的黏度和切力,有利于促进井壁滤饼去除。优先调控冲洗液的流性指数,使钻井液的的流性指数达到理想值,会显著提高固井质量。研究结果可为优化冲洗液性能参数,为提高固井质量提供理论指导。Abstract: Filter cakes generated during drilling on the surfaces of the borehole walls seriously affect the bonding quality of the interface between the cement sheath and the borehole walls if the filter cakes are not removed, resulting in poor cementing quality. Most of the current researches on improving cementing quality aims to displace the drilling fluid completely and does not consider the influence of the filter cakes. To improve the cementing quality, three Herschel-Bulkley fluid flow models for spacer fluid, drilling fluid, and filter cake in a three-dimensional eccentric annulus were established, taking into account the regulating effect of the flushing fluid on the drilling fluid. The effects of the changes in the density, consistency coefficient, flow behavior index and yield point of the drilling fluid affected by the flushing fluid on the flushing efficiency of the drilling fluid and filter cakes were systematically studied. The results show that reducing the density and rheological parameters of the flushing fluid can improve the flushing efficiency of the drilling fluid, but it will reduce the flushing efficiency of the filter cake. The density and rheological parameters of the flushing fluid are not the smaller the better. Under the condition of ensuring a high flushing efficiency of the drilling fluid, appropriately increasing the density and rheological parameters of the flushing fluid to maintain relatively high mud viscosity and gel strengths is beneficial to promoting the removal of the filter cakes. Prioritizing the regulation of the flow behavior index of the flushing fluid to make the flow behavior index of the drilling fluid reach an ideal value will significantly improve the cementing quality. The research results will provide theoretical guidance for optimizing the performance parameters of flushing fluids and for improving cementing quality.
-
表 1 井筒流体性能工程参数表
流体类型 ${\tau _0}$/Pa $ n $ $ K $/$ \mathrm{P}\mathrm{a}\cdot {\mathrm{s}}^{n} $ $ \rho\mathrm{_d} $/(g·cm−3) $ {L}_{\mathrm{C}} $/mm 钻井液 6.53 0.45 1.59 1.35 隔离液 4.20 0.72 0.60 1.42 滤饼 23.50 0.45 1.59 2.17 3 -
[1] 余海豪, 徐兆刚, 杨浩, 等. 固井水泥浆环空顶替效率研究[J]. 非常规油气,2022,9(2):119-124.YU Haihao, XU Zhaogang, YANG Hao, et al. Research on the annular displacement efficiency of cement slurry[J]. Unconventional Oil & Gas, 2022, 9(2):119-124. [2] 李建山, 李明忠, 方群, 等. 注水泥顶替环空钻井液滞留角度优化计算[J]. 钻采工艺,2014,37(6):39-41. doi: 10.3969/J.ISSN.1006-768X.2014.06.12LI Jianshan, LI Mingzhong, FANG Qun, et al. Optimal calculation on drilling fluid retention angle in eccentric annulus during cementing displacement[J]. Drilling & Production Technology, 2014, 37(6):39-41. doi: 10.3969/J.ISSN.1006-768X.2014.06.12 [3] 方春飞, 周仕明, 李根生, 等. 井径不规则性对固井顶替效率影响规律研究[J]. 石油机械,2016,44(10):1-5.FANG Chunfei, ZHOU Shiming, LI Gensheng, et al. Study on influence law of borehole rugosity on cementing displacement efficiency[J]. China Petroleum Machinery, 2016, 44(10):1-5. [4] 马越, 王宏彦, 孙巧雷, 等. 小间隙偏心环空注水泥顶替效率研究[J]. 石油机械,2022,50(6):22-28.MA Yue, WANG Hongyan, SUN Qiaolei, et al. Displacement efficiency of cementing in eccentric annulus with small clearance[J]. China Petroleum Machinery, 2022, 50(6):22-28. [5] 李照川. 清除水基滤饼提高第二界面胶结质量的绒囊冲洗液研究[D]. 北京: 中国石油大学(北京), 2023.LI Zhaochuan. Study on fuzzy-ball preflush for removing water-based filter cake to enhance the second interface cementing quality[D]. Beijing: China University of Petroleum(Beijing), 2023. [6] WEI K, YAN Z F, XIONG Q S, et al. Phase-field simulation of slurry displacement efficiency in borehole with a sudden contraction or expansion[J]. Journal of Petroleum Science and Engineering, 2021, 196:107854. [7] 侯学文, 冯定, 张斌, 等. 套损井贴堵窄间隙固井顶替分析研究[J]. 石油机械,2023,51(12):58-65,105.HOU Xuewen, FENG Ding, ZHANG Bin, et al. Cementing displacement analysis of narrow annulus in casing-damaged wells repaired with pachting-plugging pipes[J]. China Petroleum Machinery, 2023, 51(12):58-65,105. [8] PKS S, YERUBANDI K B. Slim-Well completions: a 3D numerical approach for displacement to design effective cementing fluids[C]//Trinidad and Tobago Energy Resources Conference, 2010, SPE TT 2010.PKS S, YERUBANDI K B. Slim-Well completions: a 3D numerical approach for displacement to design effective cementing fluids[C]//Trinidad and Tobago Energy Resources Conference, 2010, SPE TT 2010. [9] LI Y J, WANG Z G, AO K W, et al. Study on cementing displacement efficiency of highly deviated wells in tarim oilfield[C]//Proceedings of the International Field Exploration and Development Conference 2023: Springer Nature Singapore, 2024: 1233-1244. [10] 王涛, 展转盈, 燕迎飞. 注水泥环空动态顶替界面长距离数值模拟[J]. 非常规油气,2018,5(6):87-93. doi: 10.3969/j.issn.2095-8471.2018.06.015WANG Tao, ZHAN Zhuaiying, YAN Yingfei. Numerical simulation on dynamic displacement interface in the process of cementing in annulus[J]. Unconventional Oil & Gas, 2018, 5(6):87-93. doi: 10.3969/j.issn.2095-8471.2018.06.015 [11] 孙宁, 秦文贵, 张镇. 钻井手册第二版[M]. 北京: 北京工业出版社, 2013.SUN Ning, QIN Wengui, ZHANG Zhen. Drilling manual second edition[M]. Beijing: Beijing Industrial Press, 2013. [12] 陈浩东, 杨仲涵, 李文拓, 等. 不同井斜角下的偏心环空固井顶替规律[J]. 矿产勘查,2021,12(9):1953-1958. doi: 10.3969/j.issn.1674-7801.2021.09.012CHEN Haodong, YANG Zhonghan, LI Wentuo, et al. Cementing displacement law of eccentric annulus at different well inclination angles[J]. Mineral Exploration, 2021, 12(9):1953-1958. doi: 10.3969/j.issn.1674-7801.2021.09.012 [13] 杨谋, 赵鹏超, 赵文奎, 等. 页岩气水平井套管偏心条件下注水泥全过程压力动态预测[J]. 新疆石油天然气,2023,19(4):42-48.YANG Mou, ZHAO Pengchao, ZHAO Wenkui, et al. Dynamic prediction of cementing pressure through the whole process under eccentric casing conditions in shale gas horizontal wells[J]. Xinjiang Oil & Gas, 2023, 19(4):42-48. [14] 陆海瑛, 冯巍, 赵俊, 等. 考虑壁面滑移效应的水基微泡沫钻井液流变特性[J]. 新疆石油天然气,2021,17(4):8-14. doi: 10.3969/j.issn.1673-2677.2021.04.003LU Haiying, FENG Wei, ZHAO Jun, et al. Rheological properties of water based micro foam drilling fluids considering the wall slip effect[J]. Xinjiang Oil & Gas, 2021, 17(4):8-14. doi: 10.3969/j.issn.1673-2677.2021.04.003 [15] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.WANG Fujun. Computational fluid dynamics analysis-principles and applications of CFD software[M]. Beijing: Tsinghua University Press, 2004. [16] 魏淑惠, 朱云伟, 赵艳红. 赫-巴流体偏心环空紊流的数值模拟[J]. 科学技术与工程,2011,11(21):5172-5175,5195. doi: 10.3969/j.issn.1671-1815.2011.21.048WEI Shuhui, ZHU Yunwei, ZHAO Yanhong. Numerical simulation of herschel-bulkley fluid turbulence flow in eccentric annulus[J]. Science Technology and Engineering, 2011, 11(21):5172-5175,5195. doi: 10.3969/j.issn.1671-1815.2011.21.048 [17] LI Z C, SU G D, ZHENG L H. Enhancing filter cake removal by engineering parameter optimization for clean development of fossil Hydrogen energy: A numerical simulation[J]. International Journal of Hydrogen Energy, 2021, 46(24):12784-12800. [18] FRIGAARD I A, PASO K G,DE SOUZA MENDES P R. Bingham's model in the oil and gas industry[J]. Rheologica Acta, 2017, 56(3):259-282. [19] 王常斌, 陈海波, 徐洋, 等. 赫-巴流体同心环空流动的数值模拟[J]. 科学技术与工程,2011,11(28):6798-6801. doi: 10.3969/j.issn.1671-1815.2011.28.003WANG Changbin, CHEN Haibo, XU Yang, et al. Numerical simulation of Herschel-Bulkley fluid concentric annulus flow[J]. Science Technology and Engineering, 2011, 11(28):6798-6801. doi: 10.3969/j.issn.1671-1815.2011.28.003 -