Contamination of High Density Drilling Fluid at High temperature and Handling thereof in Northeast Sichuan
-
摘要: 川东北普光毛坝区块、通南巴马3区块、元坝区块等区块施工钻井液密度高,高密度钻井液扫塞期间受固井水泥污染后普遍出现高温稠化、固结等现象,由于污染机理不明确、缺乏有效的处理手段,通常需要较高比例的置换新浆,处理周期长、费用高。通过模拟实验简要分析验证了固井水泥对高温高密度钻井液的污染机理,结果表明:污染的主要原因一是污染后钻井液的pH值过高,导致钻井液高温增稠;二是固井水泥中的一些添加剂侵入钻井液后高温固结,吸附大量自由水导致钻井液增稠。针对污染机理,优选出聚合铝防塌剂AOP-1做为一种高效的高密度水基钻井液固井水泥污染处理剂,并成功应用四井次。现场应用效果表明,AOP-1针对高温高密度水基钻井液固井水泥污染具有良好的处理效果,避免了污染之后大量置换钻井液,提高了处理效率。Abstract: The construction drilling fluid density in the Puguang Maoba block, Tongnanba Ma 3 block, Yuanba block in Northeast Sichuan is high. During the cleaning and plugging period , the high-density drilling fluid is common to experience high temperature thickening and consolidation after being contaminated by cementing cement.Due to unclear pollution mechanisms and lack of effective treatment methods, a high proportion of replacement mud is usually required, resulting in long treatment cycles and high costs. This article briefly analyzes and verifies the pollution mechanism of cementing cement on high-temperature and high-density drilling fluid through simulation experiments. The results show that the main reasons for pollution are: firstly, the high pH value of the drilling fluid after pollution leads to high-temperature thickening; secondly, some additives in the cement slurry invade the mud and solidify at high temperature, adsorbing a large amount of free water and causing thickening of the mud.In response to the pollution mechanism, AOP-1, a polymeric aluminum anti collapse agent, was selected as an efficient high-density water-based drilling fluid cement pollution treatment agent, which was successfully applied in four wells. The on-site application shows that AOP-1 has a good treatment effect on high-temperature and high-density water-based drilling fluid well cementing pollution, which avoid a large amount of displacement of drilling fluid after pollution and improving treatment efficiency.
-
表 1 2021~2022年川东北施工高密度水基钻井液固井水泥污染损失统计
井号 开次 污染情况 处理过程 损失周期/
d处理费用/
万元元坝X井 三开
中途完钻四开中途完钻扫塞期间钻井液被隔离液混浆及水泥污染,严重增稠,前两次声幅测井均不到底,第二次通井后新配钻井液90 m3封闭尾管段后测声幅成功。 新配密度1.80 g/cm3钻井液90 m3封闭井底,测声幅成功,五开开钻前置换密度1.80 g/cm3钻井液70 m3,并全井加入5%抗温材料后恢复正常。 5.35 37.5 马X井 完井作业 完井尾管固井后扫塞期间钻井液水泥污染,高温老化后固结,不满足试气要求。 240 m3密度2.30 g/cm3试气钻井液全部重新配制。 无 60 先探X井 完井作业 尾管固井侯凝期间隔离液混浆污染高密度钻井液,导致钻井液固结后卡钻。 倒扣后套铣打捞落鱼钻具,期间置换密度2.52 g/cm3钻井液80 m3 52.73 54 元深X井 二开
中途完钻二开固井时钻井液水泥污染,电测遇阻,钻井液密度2.42 g/cm3,通井处理水泥污染时,返出钻井液呈膏状,失去流动性。 现场试验各类材料均未起到良好的处理效果,新配钻井液750 m3置换全井钻井液处理。 4.71 312.62 马X井 三开
中途完钻三开中途完钻尾管固井期间尾管内胶塞未正常下行,导致尾管内钻井液与水泥混窜严重,导致钻井液严重污染, 120℃老化后失去流动性。 测声幅前新配密度2.12 g/cm3钻井液42 m3置换至井底,扫塞期间新配密度2.12 g/cm3钻井液75 m3置换入井,合计置换117 m3。 无 29.25 平均 12.56 98.67 表 2 元深X井三开扫塞期间污染浆纯碱处理验证
实验方案 实验条件 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/Pa扫塞污染浆 60℃ 77.0 49 28.0 8.5/25.5 +0.2%Na2CO3 60℃ 86.0 60 26.0 7.0/24.5 +0.3%Na2CO3 60℃ 92.0 57 35.0 19.0/ +0.5%Na2CO3 150℃、16 h 95.0 47 48.0 30.0/ +0.5%SMT+0.5%SMC+0.25%NaOH 150℃、16 h 125.5 77 48.5 25.0/ +0.5%SMT+1%KJ-4+0.25%NaOH 150℃、16 h 93.0 53 40.0 27.0/ +0.5%Na2CO3+0.5%SMT+1%KJ-4+0.25%NaOH 150℃、16 h 80.0 52 28.0 17.5/ 注:钻井液密度为2.14 g/cm3,热滚前后测量温度均为60℃。 表 3 元深X井四开井浆不同pH值的性能(180℃、16 h)
实验方案 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PapH 井浆 37.0 31 6.0 2.5/16.0 11 井浆+0.3%NaOH 31.0 29 2.0 1.0/9.0 13 井浆+1%NaOH 55.5 37 18.5 23.0/27.0 >14 注:钻井液密度为2.13 g/cm3。 表 4 固井添加剂对元深X井四开钻井液性能的影响
实验方案 实验条件 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mL四开循环浆 60℃ 42.5 35 7.5 2.0/8.0 3.2 180℃、16 h 45.0 37 8.0 2.5/7.0 3.0 +0.3%胶乳 60℃ 43.5 33 10.5 3.0/10.0 2.6 +0.8%胶乳 60℃ 47.0 31 16.0 5.0/12.0 1.6 +1.5%胶乳 60℃ 47.5 28 19.5 6.5/17.0 0.4 180℃、16 h 82.5 54 28.5 14.0/38.5 0 +0.3%缓凝剂 60℃ 45.0 32 13.0 4.5/14.0 1.8 +0.5%缓凝剂 60℃ 46.0 34 12.0 5.0/18.0 1.0 +1%缓凝剂 60℃ 51.0 38 13.0 7.0/24.0 0.2 180℃、16 h 74.0 51 23.0 14.0/38.5 0 表 5 在马X井污染浆中加入2%AOP-1前后的性能
实验方案 实验条件 ρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mL污染浆 60℃ 2.30 40 32 8 5/13 2.0 120℃、16 h 固结 +2%AOP-1 120℃、16 h 2.30 36 30 6 3/8 2.4 表 6 不同pH值下Al在溶液中存在形式
pH<3.7 3.7 <pH< 4 4<pH< 12 12<pH<12.5 pH>12.5 Al3+ Al3+ / Al(OH)3↓ Al(OH)3↓ Al(OH)3↓/AlO2− AlO2− 表 7 聚合铝与元深X井钻井液的配伍性(180℃、16 h)
钻井液 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PapH FLHTHP/
mL井浆 60.0 40 20 13/37 11 18 井浆+0.5%AOP-1 59.5 40 18.5 13/38 11 17 井浆+1%AOP-1 56.0 27 19 12/32 11 15 注:钻井液密度为2.13 g/cm3,FLHTHP在180℃测定。 表 8 元深X井完井作业期间污染浆实验(200℃、16 h)
实验方案 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mL水泥污染浆 50.0 26 24 12.5/19.0 2.0 +1%AOP-1 24.5 20 4.5 2.0/6.0 2.6 +2%AOP-1 22.0 20 2.0 1.0/2.0 2.8 注:钻井液密度为2.13 g/cm3,FLHTHP在180℃测定。 表 9 2023年高温高密度水基钻井液固井水泥污染处理成本统计
井号 ρ/
g·cm−3T/
℃聚合铝/
%处理用时/
d处理成本/
万元元深X井四开 2.15 183 1 0 6.86 元深X井完井 1.85 210 1.5 0 9.60 马1X井完井 2.10 120 1.5 0 6.76 潼深X井完井 12.00 130 0.8 0.5 7.86 平均 1.2 0.1 6.22 -
[1] 王介坤, 文兴贵, 陈明, 等. 川东北地区复杂深井钻井液研究与应用[J]. 西部探矿工程,2007,19(6):55-59.WANG Jiekun, WEN Xinggui, CHEN Ming, et al. Research and application of complex deep well drilling fluid in Northeast Sichuan[J]. West-China Exploration Engineering, 2007, 19(6):55-59. [2] 张正, 张统得. 钻井液水泥钙侵问题分析与处理技术研究[J]. 钻探工程,2013,40(3):32-34.ZHANG Zheng, ZHANG Tongde. Analysis and treatment technology of Calcium invasion in drilling fluid cement[J]. Drilling Engineering, 2013, 40(3):32-34. [3] 王长勤, 廖青, 李强, 等. 深井高密度水泥浆防污染技术思考与应用[J]. 山东化工,2022,51(11):202-203.WANG Changqin, LIAO Qing, LI Qiang, et al. Reflection and application of pollution prevention technology for deep well high density cement slurry[J]. Shandong Chemical Industry, 2022, 51(11):202-203. [4] 孙长健, 彭园, 张仁德, 等. 碳酸根和碳酸氢根离子对钻井液的污染及处理[J]. 精细石油化工进展,2009,10(9):28-30.SUN Changjian, PENG Yuan, ZHANG Rende, et al. Contamination of drilling fluid by carbonate ion and bicarbonate ion and its treatment[J]. Advances in Fine Petrochemicals, 2009, 10(9):28-30. [5] 田磊聚,朱海金,卢海川,等. 改善固井水泥石力学性能的研究进展[J]. 钻井液与完井液,2024,41(6):695-708. doi: 10.12358/j.issn.1001-5620.2024.06.001TIAN Leiju, ZHU Haijin, LU Haichuan, et al. Progress in studying on improving mechanical property of set cement in well cementing[J]. Drilling Fluid & Completion Fluid, 2024, 41(6):695-708 doi: 10.12358/j.issn.1001-5620.2024.06.001 [6] 杜欢. 塔河油田钻井液水泥钙侵的预防与处理[J]. 西部探矿工程,2015(8):24-26.DU Huan. Prevention and treatment of cement Calcium invasion in drilling fluid of Tahe oilfield[J]. West-China Exploration Engineering, 2015(8):24-26. [7] 史沛谦, 黄宁, 黄桂春, 等. 钻井液pH值对钾钙铝离子抑制性的影响[J]. 钻采工艺,2016,39(4):76-78,95.SHI Peiqian, HUANG Ning, HUANG Guichun, et al. The effect of pH value of drilling fluid on the inhibition of Potassium, Calcium, and Aluminum ions[J]. Drilling & Production Technology, 2016, 39(4):76-78,95. [8] 马运庆, 王伟忠, 杨俊贞, 等. 浅谈钻井液pH值对处理剂的影响[J]. 钻井液与完井液,2008,25(3):77-78.MA Yunqing, WANG Weizhong, YANG Junzhen, et al. A brief discussion on the influence of drilling fluid pH on treatment agents[J]. Drilling Fluid & Completion Fluid, 2008, 25(3):77-78. [9] 徐大伟,汪晓静,徐春虎,等. 且深1井盐层尾管超高温高密度固井水泥浆技术[J]. 钻井液与完井液,2024,41(5):622-629. doi: 10.12358/j.issn.1001-5620.2024.05.009XU Dawei, WANG Xiaojing, XU Chunhu, et al. Extra-high temperature high density cement slurry for cementing liners through salt formation in well Qieshen-1[J]. Drilling Fluid & Completion Fluid, 2024, 41(5):622-629 doi: 10.12358/j.issn.1001-5620.2024.05.009 [10] 曹来顺. 聚合铝钻井液技术在永1-平1井中的应用[J]. 钻采工艺,2009,32(3):17-19.CAO Laishun. Application of polyaluminium drilling fluid in Yongl-Hl well[J]. Drilling & Production Technology, 2009, 32(3):17-19. [11] 张豪, 邢丕峰, 李萍, 等. 铝在氢氧化钠溶液中的电解加工与钝化机理[J]. 强激光与离子束, 2014, 26(11): 1-5.ZHANG Hao, XING Pifeng, LI Ping, et al. Electro-corrosion machining of aluminum in alkaline solution and passivated mechanism[J]. High Power Laser and Particle Beams, 2014, 26(11): 112004. [12] 吴正帅, 任志斌. Al(OH)3的酸碱性的实验探讨[J]. 中小学实验与装备,2018,28(2):6-7.WU Zhengshuai, REN Zhibin. Experimental exploration of the acidity and alkalinity of Al(OH)3[J]. Experiment and Equipment for Primary School, 2018, 28(2):6-7. [13] 张戈. 速凝剂主要组分对水泥水化及力学性能的影响[J]. 铁道学报,2020,42(1):112-118.ZHANG Ge. Influence of accelerator main components on hydration and mechanical properties of Portland cement[J]. Journal of the China Railway Society, 2020, 42(1):112-118. -