留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AMPS的早强型缓凝剂的合成及性能

谢云媚 张晔 马勇 程小伟 梅开元 张春梅

谢云媚,张晔,马勇,等. 基于AMPS的早强型缓凝剂的合成及性能[J]. 钻井液与完井液,2025,42(3):379-385 doi: 10.12358/j.issn.1001-5620.2025.03.014
引用本文: 谢云媚,张晔,马勇,等. 基于AMPS的早强型缓凝剂的合成及性能[J]. 钻井液与完井液,2025,42(3):379-385 doi: 10.12358/j.issn.1001-5620.2025.03.014
XIE Yunmei, ZHANG Ye, MA Yong, et al.Synthesis and properties of an early-strength retarder based on AMPS[J]. Drilling Fluid & Completion Fluid,2025, 42(3):379-385 doi: 10.12358/j.issn.1001-5620.2025.03.014
Citation: XIE Yunmei, ZHANG Ye, MA Yong, et al.Synthesis and properties of an early-strength retarder based on AMPS[J]. Drilling Fluid & Completion Fluid,2025, 42(3):379-385 doi: 10.12358/j.issn.1001-5620.2025.03.014

基于AMPS的早强型缓凝剂的合成及性能

doi: 10.12358/j.issn.1001-5620.2025.03.014
基金项目: 国家自然科学基金“无机-有机杂化改性Zn/Fe氢氧化物对地热水中H2S吸附机理研究”(42207206)。
详细信息
    作者简介:

    谢云媚,在读硕士研究生,2001年生,就读于西南石油大学材料科学与工程专业,主要从事固井材料方面的研究。电话 17721878183;E-mail:2311427892@qq.com

    通讯作者:

    程小伟,教授,博士生导师。E-mail:chengxw@swpu.edu.cn

  • 中图分类号: TE256.6

Synthesis and Properties of an Early-Strength Retarder Based on AMPS

  • 摘要: 随着油气开采深度的增加,长封固段温度梯度过大,为保证水泥浆的安全泵送,需要加入大量油井水泥缓凝剂,这会导致水泥浆在井口低温段出现超缓凝、强度发展缓慢等问题,严重影响固井质量和安全。针对现有问题,基于吸附理论选择AMPS、MA、NVP、DEAA四种单体合成一种耐高温早强型缓凝剂AMND,并通过红外光谱、热稳定性测试、凝胶色谱分析、高温高压稠化等方法对缓凝剂的结构和性能进行测试。测试结果表明:缓凝剂AMND高温稠化性能优异,在150℃高温条件下水泥浆稠化时间可达316 min;缓凝剂AMND具有优异的调凝性以及较低的温度敏感性与加量敏感性,能够调节不同温度段的稠化时间,有利于水泥浆在固井施工现场的安全泵送;对水泥石力学发展影响较小,在150℃循环温度、60℃养护条件下,1 d、2 d、3 d强度分别可达6.34、8.24、14.66 MPa,满足固井施工强度要求。结论认为该缓凝剂能够缓解低温段超缓凝现象,实现高温井底缓凝,且不影响井口强度发展,成功缓解大温差长封固段井超缓凝或者不凝的难题,具有很好的应用前景。

     

  • 图  1  缓凝剂AMND红外光谱图

    图  2  缓凝剂AMND的核磁氢谱图

    图  3  缓凝剂AMND的TG-DTG曲线

    图  4  不同温度下缓凝剂加量对水泥浆稠化时间的影响

    图  5  不同缓凝剂加量下水泥浆的稠化时间

    图  6  150℃下加有3%AMND的水泥浆稠化曲线

    图  7  对照组水泥石和含有缓凝剂的XRD图谱

    图  8  水泥石的SEM图

    表  1  合成缓凝剂的正交实验结果

    序号 A B C D t稠化/
    min
    单体质量比 T反应/℃ 引发剂/% pH
    1 6.50︰2.00︰1.25︰0.25 55 0.8 4 292
    2 6.50︰2.00︰1.25︰0.25 60 1.0 5 303
    3 6.50︰2.00︰1.25︰0.25 65 1.2 6 299
    4 6.75︰1.75︰1.25︰0.25 55 1.2 6 305
    5 6.75︰1.75︰1.25︰0.25 60 1.0 5 316
    6 6.75︰1.75︰1.25︰0.25 65 0.8 4 310
    7 7.00︰1.50︰1.25︰0.25 55 1.0 4 269
    8 7.00︰1.50︰1.25︰0.25 60 0.8 6 276
    9 7.00︰1.50︰1.25︰0.25 65 1.2 5 221
    K1 298 289 293 299
    K2 310 298 296 280
    K3 255 277 272 293
    R 55 22 24 19
    最佳
    水平
    A2 B2 C2 D1
     注:单体质量比为AMPS︰MA︰NVP︰DEAA;K1K2K3分别为水平一、水平二、水平三条件下的平均稠化时间;R是同种因素条件下各水平之间的极差。
    下载: 导出CSV

    表  2  不同缓凝剂对水泥石顶部强度的影响

    缓凝剂 加量/
    %
    t稠化/
    min
    70℃养护强度/MPa
    1 d 2 d 3 d
    GH-9L 1.6 291 7.02 14.50
    SD210 2.2 322 10.04
    AMND 2.0 276 11.44 16.36 18.96
      注:实验条件为125℃×60 MPa。
    下载: 导出CSV

    表  3  缓凝剂对不同温度段抗压强度的影响

    AMND/
    %
    T稠化/
    P稠化/
    MPa
    T养护/
    T/
    p1 d/
    MPa
    p2 d/
    MPa
    p3 d/
    MPa
    3 150 75 60 90 6.34 8.24 14.66
    3 150 75 70 80 6.46 9.56 15.28
    3 150 75 90 60 7.06 12.54 19.92
    3 140 70 60 80 6.90 10.18 15.24
    3 140 70 70 70 7.74 12.74 15.44
    3 140 70 90 50 7.96 16.66 17.92
    3 130 65 60 70 8.24 10.42 16.10
    3 130 65 70 60 9.36 14.90 17.68
    3 130 65 90 40 9.46 17.96 18.44
    2 120 60 60 60 9.05 11.82 18.10
    2 120 60 70 50 11.00 16.22 18.48
    2 120 60 90 30 12.98 18.66 22.44
    1 110 55 60 50 10.40 12.48 18.34
    1 110 55 70 40 11.46 16.96 19.62
    1 110 55 90 20 15.78 19.26 25.80
    下载: 导出CSV
  • [1] 罗鸣, 冯永存, 桂云, 等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报,2021,6(2):228-244. doi: 10.3969/j.issn.2096-1693.2021.02.018

    LUO Ming, FENG Yongcun, GUI Yun, et al. Development status and prospect of key technologies for high tempera-ture and high pressure drilling[J]. Petroleum Science Bulletin, 2021, 6(2):228-244. doi: 10.3969/j.issn.2096-1693.2021.02.018
    [2] 汪海阁, 黄洪春, 毕文欣, 等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163-177. doi: 10.3787/j.issn.1000-0976.2021.08.015

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8):163-177. doi: 10.3787/j.issn.1000-0976.2021.08.015
    [3] 靳建洲, 魏风奇, 艾正青, 等. 超深特深油气井固井关键技术进展[J]. 钻采工艺,2024,47(2):104-112. doi: 10.3969/J.ISSN.1006-768X.2024.02.12

    JIN Jianzhou, WEI Fengqi, AI Zhengqing, et al. Key technologies for cementing of deep and ultra-deep oil and gas wells[J]. Drilling & Production Technology, 2024, 47(2):104-112. doi: 10.3969/J.ISSN.1006-768X.2024.02.12
    [4] 齐奉忠, 于永金, 刘斌辉, 等. 长封固段大温差固井技术研究与实践[J]. 石油科技论坛,2017,36(6):32-36. doi: 10.3969/j.issn.1002-302x.2017.06.007

    QI Fengzhong, YU Yongjin, LIU Binhui, et al. Study and practice of large temperature difference cementing technology for long-cementing interval[J]. Petroleum Science and Technology Forum, 2017, 36(6):32-36. doi: 10.3969/j.issn.1002-302x.2017.06.007
    [5] 汪海阁, 黄洪春, 纪国栋, 等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1-11. doi: 10.3969/j.issn.1672-7703.2023.03.001

    WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3):1-11. doi: 10.3969/j.issn.1672-7703.2023.03.001
    [6] 齐奉忠, 刘硕琼, 沈吉云, 等. 中国石油固井技术进展及面临的问题[J]. 石油科技论坛,2013,32(4):5-8. doi: 10.3969/j.issn.1002-302x.2013.04.002

    QI Fengzhong, LIU Shuoqiong, SHEN Jiyun, et al. Problems facing CNPC well cementing technological development[J]. Petroleum Science and Technology Forum, 2013, 32(4):5-8. doi: 10.3969/j.issn.1002-302x.2013.04.002
    [7] LYU B, ZHANG J F, XIE S, et al. Synthesis and evaluation of highly inhibitory oil well cement retarders with Branched-Chain structures[J]. ACS Omega, 2023, 8(43):40754-40763. doi: 10.1021/acsomega.3c05692
    [8] LU Y, LI M, GUO Z H, et al. A novel high temperature retarder applied to a long cementing interval[J]. RSC Advances, 2016, 6(17):14421-14426. doi: 10.1039/C5RA24638E
    [9] 武治强, 幸雪松, 赵以鹏. 响应面法优化两亲聚合物缓凝剂温度响应特性[J]. 钻井液与完井液,2023,40(5):652-657. doi: 10.12358/j.issn.1001-5620.2023.05.015

    WU Zhiqiang, XING Xuesong, ZHAO Yipeng. Optimization of preparation of amphiphilic polymer as high temperature retarder and intelligent control of thickening time of cement slurry by response surface methodology[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):652-657. doi: 10.12358/j.issn.1001-5620.2023.05.015
    [10] 夏修建, 于永金, 陈洲洋, 等. 一种新型超高温固井水泥浆缓凝剂[J]. 天然气工业,2021,41(9):98-104. doi: 10.3787/j.issn.1000-0976.2021.09.010

    XIA Xiujian, YU Yongjin, CHEN Zhouyang, et al. A novel retarder for ultra-high temperature cementing slurry[J]. Natural Gas Industry, 2021, 41(9):98-104. doi: 10.3787/j.issn.1000-0976.2021.09.010
    [11] ZHANG R, HUO J H, PENG Z G, et al. Investigation of poly (AM/AMPS/MA) on the retarding performance of oil well cement[J]. Applied Magnetic Resonance, 2016, 47(9):987-1001. doi: 10.1007/s00723-016-0814-4
    [12] 吕斌, 张善德, 吴广兴, 等. 可抑制稠化异常的新型油井水泥缓凝剂的研究[J]. 钻井液与完井液,2017,34(5):67-72. doi: 10.3969/j.issn.1001-5620.2017.05.013

    LYU Bin, ZHANG Shande, WU Guangxing, et al. Study on new oil well cement retarder able to inhibit abnormal thickening of cement slurry[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):67-72. doi: 10.3969/j.issn.1001-5620.2017.05.013
    [13] 李早元, 陈建, 黄盛, 等. 含双温敏单体的耐220℃高温降失水剂[J]. 油田化学,2024,41(1):1-9.

    LI Zaoyuan, CHEN Jian, HUANG Sheng, et al. Fluid loss additive containing double temperature-sensitive monomer with high temperature 220℃ resistance[J]. Oilfield Chemistry, 2024, 41(1):1-9.
    [14] ZHANG C, JIN J Z, XU W N, et al. Synthesis and characterization of SSS/MA/NVCL copolymer as high temperature oil well cement retarder[J]. Journal of Dispersion Science and Technology, 2022, 43(9):1405-1415. doi: 10.1080/01932691.2020.1869031
    [15] 陈欣彤, 韩亮, 唐欣, 等. 新型两性离子固井缓凝剂合成与性能评价[J]. 钻井液与完井液,2019,36(3):360-365. doi: 10.3969/j.issn.1001-5620.2019.03.017

    CHEN Xintong, HAN Liang, TANG Xin, et al. Synthesis and performance evaluation of a new amphoteric well cement retarder[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):360-365. doi: 10.3969/j.issn.1001-5620.2019.03.017
    [16] 马超, 万刚, 张熙. 温敏聚合物正辛基苯乙烯/N, N-二乙基丙烯酰胺/丙烯酰胺合成及溶液性能[J]. 高分子材料科学与工程,2016,32(11):28-32.

    MA Chao, WAN Gang, ZHANG Xi. Synthesis and solution properties of Temperature-Sensitive copolymer OBS/DEAM/AM[J]. Polymer Materials Science & Engineering, 2016, 32(11):28-32.
    [17] SY/T 5504.1-2005, 油井水泥外加剂评价方法 第一部分: 缓凝剂[S].

    SY/T 5504.1-2005, Evaluation method for well cement additives -- Part 1: Retarder[S].
    [18] YU Y J, WU X Y, GUO J T, et al. Synthesis and performance evaluation of terpolymer high temperature retarder for oil well cement[J]. Journal of Dispersion Science and Teclinghnology, 2023, 44(14):2610-2618. doi: 10.1080/01932691.2022.2110112
    [19] 冯德杰, 杨启贞, 曹成章. 油井水泥大温差缓凝剂的合成及性能研究[J]. 合成化学,2023,31(2):93-100.

    FENG Dejie, YANG Qizhen, CAO Chengzhang. Study on synthesis and properties of oil well cement retarder with large temperature difference[J]. Chinese Journal of Synthetic Chemistry, 2023, 31(2):93-100.
    [20] 于斌, 丹美涵, 姜经帅, 等. 抗温敏大温差聚合物缓凝剂的合成与应用[J]. 钻井液与完井液,2017,34(3):85-88. doi: 10.3969/j.issn.1001-5620.2017.03.017

    YU Bin, DAN Meihan, JIANG Jingshuai, et al. The synthesis and application of temperature sensitivity resistance retarder suitable for big temperature difference environment[J]. Drilling Fluid & Completion Fluid, 2017, 34(3):85-88. doi: 10.3969/j.issn.1001-5620.2017.03.017
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 修回日期:  2025-02-25
  • 刊出日期:  2025-06-12

目录

    /

    返回文章
    返回