Synthesis and Properties of an Early-Strength Retarder Based on AMPS
-
摘要: 随着油气开采深度的增加,长封固段温度梯度过大,为保证水泥浆的安全泵送,需要加入大量油井水泥缓凝剂,这会导致水泥浆在井口低温段出现超缓凝、强度发展缓慢等问题,严重影响固井质量和安全。针对现有问题,基于吸附理论选择AMPS、MA、NVP、DEAA四种单体合成一种耐高温早强型缓凝剂AMND,并通过红外光谱、热稳定性测试、凝胶色谱分析、高温高压稠化等方法对缓凝剂的结构和性能进行测试。测试结果表明:缓凝剂AMND高温稠化性能优异,在150℃高温条件下水泥浆稠化时间可达316 min;缓凝剂AMND具有优异的调凝性以及较低的温度敏感性与加量敏感性,能够调节不同温度段的稠化时间,有利于水泥浆在固井施工现场的安全泵送;对水泥石力学发展影响较小,在150℃循环温度、60℃养护条件下,1 d、2 d、3 d强度分别可达6.34、8.24、14.66 MPa,满足固井施工强度要求。结论认为该缓凝剂能够缓解低温段超缓凝现象,实现高温井底缓凝,且不影响井口强度发展,成功缓解大温差长封固段井超缓凝或者不凝的难题,具有很好的应用前景。Abstract: With the increase in the depth of oil and gas exploitation, the temperature gradient in the long cementing section becomes increasingly larger. To ensure the safe pumping of cement slurries, a large amount of oil well cement retarder needs to be added, resulting in problems such as super-retardation and slow strength development of the cement slurries in the low-temperature section at the wellhead, which in turn seriously affecting the quality and safety of cementing operations. To deal with these problems, a high-temperature resistant and early-strength type retarder AMND was synthesized with four monomers, namely AMPS, MA, NVP and DEAA, based on the adsorption theory. The molecular structure and performance of the retarder were tested by methods such as infrared spectroscopy, thermal stability testing, gel permeation chromatography analysis and high temperature and high pressure thickening. The test results show that: 1) the retarder AMND has excellent thickening performance at high temperatures; the thickening time of the cement slurry can reach 316 minutes at 150℃, 2) AMND has excellent setting control performance, as well as low temperature sensitivity and dosage sensitivity. It can adjust the thickening time in different temperature ranges, which is beneficial to the safe pumping of the cement slurry at the well site, 3) it has little impact on the mechanical development of the set cement. At a circulating temperature of 150℃ and a curing temperature of 60℃, the strengths of the set cement at 1 day, 2 days, and 3 days can reach 6.34 MPa, 8.24 MPa, and 14.66 MPa respectively, satisfying the strength requirements for cementing operations. The conclusion is that this retarder can alleviate the super-retardation phenomenon in the low-temperature condition, achieve retardation at high bottom hole temperatures, and does not affect the development of the strength of the cement at the wellhead. It has successfully mitigated the super-retardation or non-setting problems in wells with large temperature differences and long cementing sections, and has a very good application prospect.
-
表 1 合成缓凝剂的正交实验结果
序号 A B C D t稠化/
min单体质量比 T反应/℃ 引发剂/% pH 1 6.50︰2.00︰1.25︰0.25 55 0.8 4 292 2 6.50︰2.00︰1.25︰0.25 60 1.0 5 303 3 6.50︰2.00︰1.25︰0.25 65 1.2 6 299 4 6.75︰1.75︰1.25︰0.25 55 1.2 6 305 5 6.75︰1.75︰1.25︰0.25 60 1.0 5 316 6 6.75︰1.75︰1.25︰0.25 65 0.8 4 310 7 7.00︰1.50︰1.25︰0.25 55 1.0 4 269 8 7.00︰1.50︰1.25︰0.25 60 0.8 6 276 9 7.00︰1.50︰1.25︰0.25 65 1.2 5 221 K1 298 289 293 299 K2 310 298 296 280 K3 255 277 272 293 R 55 22 24 19 最佳
水平A2 B2 C2 D1 注:单体质量比为AMPS︰MA︰NVP︰DEAA;K1、K2、K3分别为水平一、水平二、水平三条件下的平均稠化时间;R是同种因素条件下各水平之间的极差。 表 2 不同缓凝剂对水泥石顶部强度的影响
缓凝剂 加量/
%t稠化/
min70℃养护强度/MPa 1 d 2 d 3 d GH-9L 1.6 291 7.02 14.50 SD210 2.2 322 10.04 AMND 2.0 276 11.44 16.36 18.96 注:实验条件为125℃×60 MPa。 表 3 缓凝剂对不同温度段抗压强度的影响
AMND/
%T稠化/
℃P稠化/
MPaT养护/
℃△T/
℃p1 d/
MPap2 d/
MPap3 d/
MPa3 150 75 60 90 6.34 8.24 14.66 3 150 75 70 80 6.46 9.56 15.28 3 150 75 90 60 7.06 12.54 19.92 3 140 70 60 80 6.90 10.18 15.24 3 140 70 70 70 7.74 12.74 15.44 3 140 70 90 50 7.96 16.66 17.92 3 130 65 60 70 8.24 10.42 16.10 3 130 65 70 60 9.36 14.90 17.68 3 130 65 90 40 9.46 17.96 18.44 2 120 60 60 60 9.05 11.82 18.10 2 120 60 70 50 11.00 16.22 18.48 2 120 60 90 30 12.98 18.66 22.44 1 110 55 60 50 10.40 12.48 18.34 1 110 55 70 40 11.46 16.96 19.62 1 110 55 90 20 15.78 19.26 25.80 -
[1] 罗鸣, 冯永存, 桂云, 等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报,2021,6(2):228-244. doi: 10.3969/j.issn.2096-1693.2021.02.018LUO Ming, FENG Yongcun, GUI Yun, et al. Development status and prospect of key technologies for high tempera-ture and high pressure drilling[J]. Petroleum Science Bulletin, 2021, 6(2):228-244. doi: 10.3969/j.issn.2096-1693.2021.02.018 [2] 汪海阁, 黄洪春, 毕文欣, 等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163-177. doi: 10.3787/j.issn.1000-0976.2021.08.015WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8):163-177. doi: 10.3787/j.issn.1000-0976.2021.08.015 [3] 靳建洲, 魏风奇, 艾正青, 等. 超深特深油气井固井关键技术进展[J]. 钻采工艺,2024,47(2):104-112. doi: 10.3969/J.ISSN.1006-768X.2024.02.12JIN Jianzhou, WEI Fengqi, AI Zhengqing, et al. Key technologies for cementing of deep and ultra-deep oil and gas wells[J]. Drilling & Production Technology, 2024, 47(2):104-112. doi: 10.3969/J.ISSN.1006-768X.2024.02.12 [4] 齐奉忠, 于永金, 刘斌辉, 等. 长封固段大温差固井技术研究与实践[J]. 石油科技论坛,2017,36(6):32-36. doi: 10.3969/j.issn.1002-302x.2017.06.007QI Fengzhong, YU Yongjin, LIU Binhui, et al. Study and practice of large temperature difference cementing technology for long-cementing interval[J]. Petroleum Science and Technology Forum, 2017, 36(6):32-36. doi: 10.3969/j.issn.1002-302x.2017.06.007 [5] 汪海阁, 黄洪春, 纪国栋, 等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1-11. doi: 10.3969/j.issn.1672-7703.2023.03.001WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3):1-11. doi: 10.3969/j.issn.1672-7703.2023.03.001 [6] 齐奉忠, 刘硕琼, 沈吉云, 等. 中国石油固井技术进展及面临的问题[J]. 石油科技论坛,2013,32(4):5-8. doi: 10.3969/j.issn.1002-302x.2013.04.002QI Fengzhong, LIU Shuoqiong, SHEN Jiyun, et al. Problems facing CNPC well cementing technological development[J]. Petroleum Science and Technology Forum, 2013, 32(4):5-8. doi: 10.3969/j.issn.1002-302x.2013.04.002 [7] LYU B, ZHANG J F, XIE S, et al. Synthesis and evaluation of highly inhibitory oil well cement retarders with Branched-Chain structures[J]. ACS Omega, 2023, 8(43):40754-40763. doi: 10.1021/acsomega.3c05692 [8] LU Y, LI M, GUO Z H, et al. A novel high temperature retarder applied to a long cementing interval[J]. RSC Advances, 2016, 6(17):14421-14426. doi: 10.1039/C5RA24638E [9] 武治强, 幸雪松, 赵以鹏. 响应面法优化两亲聚合物缓凝剂温度响应特性[J]. 钻井液与完井液,2023,40(5):652-657. doi: 10.12358/j.issn.1001-5620.2023.05.015WU Zhiqiang, XING Xuesong, ZHAO Yipeng. Optimization of preparation of amphiphilic polymer as high temperature retarder and intelligent control of thickening time of cement slurry by response surface methodology[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):652-657. doi: 10.12358/j.issn.1001-5620.2023.05.015 [10] 夏修建, 于永金, 陈洲洋, 等. 一种新型超高温固井水泥浆缓凝剂[J]. 天然气工业,2021,41(9):98-104. doi: 10.3787/j.issn.1000-0976.2021.09.010XIA Xiujian, YU Yongjin, CHEN Zhouyang, et al. A novel retarder for ultra-high temperature cementing slurry[J]. Natural Gas Industry, 2021, 41(9):98-104. doi: 10.3787/j.issn.1000-0976.2021.09.010 [11] ZHANG R, HUO J H, PENG Z G, et al. Investigation of poly (AM/AMPS/MA) on the retarding performance of oil well cement[J]. Applied Magnetic Resonance, 2016, 47(9):987-1001. doi: 10.1007/s00723-016-0814-4 [12] 吕斌, 张善德, 吴广兴, 等. 可抑制稠化异常的新型油井水泥缓凝剂的研究[J]. 钻井液与完井液,2017,34(5):67-72. doi: 10.3969/j.issn.1001-5620.2017.05.013LYU Bin, ZHANG Shande, WU Guangxing, et al. Study on new oil well cement retarder able to inhibit abnormal thickening of cement slurry[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):67-72. doi: 10.3969/j.issn.1001-5620.2017.05.013 [13] 李早元, 陈建, 黄盛, 等. 含双温敏单体的耐220℃高温降失水剂[J]. 油田化学,2024,41(1):1-9.LI Zaoyuan, CHEN Jian, HUANG Sheng, et al. Fluid loss additive containing double temperature-sensitive monomer with high temperature 220℃ resistance[J]. Oilfield Chemistry, 2024, 41(1):1-9. [14] ZHANG C, JIN J Z, XU W N, et al. Synthesis and characterization of SSS/MA/NVCL copolymer as high temperature oil well cement retarder[J]. Journal of Dispersion Science and Technology, 2022, 43(9):1405-1415. doi: 10.1080/01932691.2020.1869031 [15] 陈欣彤, 韩亮, 唐欣, 等. 新型两性离子固井缓凝剂合成与性能评价[J]. 钻井液与完井液,2019,36(3):360-365. doi: 10.3969/j.issn.1001-5620.2019.03.017CHEN Xintong, HAN Liang, TANG Xin, et al. Synthesis and performance evaluation of a new amphoteric well cement retarder[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):360-365. doi: 10.3969/j.issn.1001-5620.2019.03.017 [16] 马超, 万刚, 张熙. 温敏聚合物正辛基苯乙烯/N, N-二乙基丙烯酰胺/丙烯酰胺合成及溶液性能[J]. 高分子材料科学与工程,2016,32(11):28-32.MA Chao, WAN Gang, ZHANG Xi. Synthesis and solution properties of Temperature-Sensitive copolymer OBS/DEAM/AM[J]. Polymer Materials Science & Engineering, 2016, 32(11):28-32. [17] SY/T 5504.1-2005, 油井水泥外加剂评价方法 第一部分: 缓凝剂[S].SY/T 5504.1-2005, Evaluation method for well cement additives -- Part 1: Retarder[S]. [18] YU Y J, WU X Y, GUO J T, et al. Synthesis and performance evaluation of terpolymer high temperature retarder for oil well cement[J]. Journal of Dispersion Science and Teclinghnology, 2023, 44(14):2610-2618. doi: 10.1080/01932691.2022.2110112 [19] 冯德杰, 杨启贞, 曹成章. 油井水泥大温差缓凝剂的合成及性能研究[J]. 合成化学,2023,31(2):93-100.FENG Dejie, YANG Qizhen, CAO Chengzhang. Study on synthesis and properties of oil well cement retarder with large temperature difference[J]. Chinese Journal of Synthetic Chemistry, 2023, 31(2):93-100. [20] 于斌, 丹美涵, 姜经帅, 等. 抗温敏大温差聚合物缓凝剂的合成与应用[J]. 钻井液与完井液,2017,34(3):85-88. doi: 10.3969/j.issn.1001-5620.2017.03.017YU Bin, DAN Meihan, JIANG Jingshuai, et al. The synthesis and application of temperature sensitivity resistance retarder suitable for big temperature difference environment[J]. Drilling Fluid & Completion Fluid, 2017, 34(3):85-88. doi: 10.3969/j.issn.1001-5620.2017.03.017 -