Construction of a deep high-temperature high-density resilient cement slurry system for the bayan oilfield
-
摘要: 针对巴彦-河套盆地井深6000 m以上的膏盐层,井底循环温度180℃左右,常规的高温高密度水泥浆存在流变性和稳定性差,失水量大,稠化时间难以调控、早期强度发育缓慢等技术难题,急需研发出密度为2.30~2.50 g/cm3的耐盐高温高密度韧性水泥浆体系。针对水泥浆外加剂以“无机纳米颗粒+聚合物弱交联”结构设计制备出降失水剂(LHF)、“强吸附阳离子单体+阴离子单体”制备出缓凝剂(LHR)和“温敏缔合+微交联”结构设计制备出悬浮稳定剂(LHX)分别调控水泥浆的失水量,稠化时间,沉降稳定性;依靠紧密堆积理论,采用Dinger与Funk对Andrease方程进行修正的MAA模型,以铁矿粉为主,GM-1为辅作为加重剂构建密度为2.30、2.40和2.50 g/cm3的高密度水泥浆体系,颗粒之间以滚珠形式相接触,降低摩阻;针对早期水泥石力学性能发展缓慢,分别引入增强剂和增韧剂,从纳米尺度、微米尺度两方面增加水泥石的力学性能:一部分填充孔隙,另一部分充当骨架结构,形成类似于“钢筋混泥土”构型,降低了水泥石的脆性。最终形成密度为2.30、2.40和2.50 g/cm3的水泥浆体系,该体系流变性好,稳定性高,失水量小于50 mL,稠化时间可调。Abstract: For the gypsum salt layer encountered in wells deeper than 6,000 meters in the Bayan-Hetao Basin, where the bottom hole circulating temperature is around 180℃, conventional high-temperature and high-density cement slurries present several technical challenges, including poor rheological performance and stability, high fluid loss, difficult control of thickening time, and slow early strength development. There is an urgent need to develop a salt-resistant, high-temperature, and high-density resilient cement slurry system with a density range of 2.30 to 2.50 g/cm3. In view of the cement slurry admixture, the fluid loss agent (LHF) was prepared by the structure design of 'inorganic nanoparticles + polymer weak crosslinking', the retarder (LHR) was prepared by the structure design of 'strong adsorption cationic monomer + anionic monomer', and the suspension stabilizer (LHX) was prepared by the structure design of 'temperature sensitive association + micro crosslinking'. The fluid loss, thickening time and sedimentation stability of cement slurry were controlled respectively. Relying on the theory of close packing, and adopting a modified MAA model by correcting the Andrease equation with Dinger and Funk’s approach, a high-density cement slurry system with densities of 2.30 g/cm3, 2.40 g/cm3, and 2.50 g/cm3 is constructed using iron ore powder as the primary weighting agent and GM-1 as a supplementary weighting agent. The particles interact in a ball-bearing manner to reduce friction. To address the issue of slow early development of the mechanical properties of the cement stone, both strength enhancers and toughness improvers are introduced. These additives work at both the nanoscale and microscale to improve the mechanical properties of the cement stone: some fill the pores, while others act as a skeletal structure, forming a configuration similar to "reinforced concrete," which reduces the brittleness of the cement stone. The final cement slurry systems formed with densities of 2.30, 2.40, and 2.50 g/cm3 exhibit good rheological properties, high stability, fluid loss of less than 50 mL, and adjustable thickening times.
-
Key words:
- Ultra-deep well /
- High temperature /
- Cement stone /
- Toughening agent /
- Salt resistance /
- High density
-
表 1 不同密度水泥浆性能
ρ/
g·cm−3T/℃ 流动度/cm △ρ/
g·cm−32.30 常温 22.0 180℃降至90℃ 0.02 2.40 常温 21.0 180℃降至90℃ 0.03 2.50 常温 180℃降至90℃ 20.5 0.04 表 3 不同密度水泥浆稠化性能
ρ/
g·cm−3T/
℃LHR/
%LHF/
%LHX/
%t稠化/
minFL/
mL2.30 180 2 2.5 0.5 403 24.3 2.40 180 2 2.0 1.0 524 21.6 2.50 180 1 2.5 1.0 575 21.4 表 2 不同密度水泥浆流变性能
ρ/
g·cm−3不同转速(s−1)对应读数 K/
Pa·snn φ3 φ6 φ100 φ200 φ300 φ600 2.30 5 10 124 195 258 0.66 0.86 2.40 7 12 135 212 262 0.96 0.81 2.50 6 15 155 235 285 0.94 0.83 -
[1] 冯志强, 孔祥宇, 褚王涛. 中国油气供应安全面临新挑战——新形势下中国石油企业“走出去”发展战略思考[J]. 国际石油经济,2019,27(10):8-15.FENG Zhiqiang, KONG Xiangyu, CHU Wangtao. New challenges in China's oil and gas supply security——the "going global" development strategy for China's petroleum enterprises under the new situation[J]. International Petroleum Economics, 2019, 27(10):8-15. [2] 蔡勋育, 刘金连, 张宇, 等. 中国石化“十三五”油气勘探进展与“十四五”前景展望[J]. 中国石油勘探,2021,26(1):31-42.CAI Xunyu, LIU Jinlian, ZHANG Yu, et al. Oil and gas exploration progress of Sinopec during the 13th five-year plan period and prospect forecast for the 14th five-year plan[J]. China Petroleum Exploration, 2021, 26(1):31-42. [3] 袁光杰, 付利, 王元, 等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1-12.YUAN Guangjie, FU Li, WANG Yuan, et al. The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1):1-12. [4] 许勤华, 李文琪. 全球碳中和背景下的中国能源安全方略[J]. 南通大学学报(社会科学版),2023,39(1):117-129.XU Qinhua, LI Wenqi. China's energy security strategy in the context of global carbon neutrality[J]. Journal of Nantong University (Social Sciences Edition), 2023, 39(1):117-129. [5] 孙长远, 李红欣. 中国石油供给安全分析[J]. 石家庄经济学院学报,2006,29(2):174-177.SUN Changyuan, LI Hongxin. Analysis on China's petroleum supply security[J]. Journal of Shijiazhuang University of Economics, 2006, 29(2):174-177. [6] 雷群, 翁定为, 罗健辉, 等. 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发,2019,46(1):139-145.LEI Qun, WENG Dingwei, LUO Jianhui, et al. Achievements and future work of oil and gas production engineering of CNPC[J]. Petroleum Exploration and Development, 2019, 46(1):139-145. [7] 刘锋报, 孙金声, 刘敬平, 等. 抗超高温220℃聚合物水基钻井液技术[J]. 钻井液与完井液,2024,41(2):148-154.LIU Fengbao, SUN Jinsheng, LIU Jingping, et al. A polymer water based drilling fluid for 220℃ bottomhole temperature[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):148-154. [8] 张玉平, 杨远光, 宋元洪, 等. 超高温超高密度防气窜水泥浆[J]. 钻井液与完井液,2015,32(4):51-54.ZHANG Yuping, YANG Yuanguang, SONG Yuanhong, et al. Ultra high temperature and ultra-high density anti gas channeling cement slurry[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):51-54. [9] 闫睿昶, 徐明, 虞海法, 等. 巴彦河套盆地复杂储层固井技术[J]. 钻井液与完井液,2023,40(1):82-88.YAN Ruichang, XU Ming, YU Haifa, et al. Well cementing technology for complex reservoirs in the Bayan Hetao basin[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):82-88. [10] 李凯, 王孝超, 陈猛如, 等. 巴彦河套盆地片麻岩储层改造工艺研究及应用[J]. 中国矿业,2020,29(7):158-162.LI Kai, WANG Xiaochao, CHEN Mengru, et al. Study and application of gneiss reservoir reconstruction technology in the Bayanhetao basin[J]. China Mining Magazine, 2020, 29(7):158-162. [11] GUO S L, BU Y H, ZHOU A N, et al. A three components thixotropic agent to enhance the thixotropic property of natural gas well cement at high temperatures[J]. Journal of Natural Gas Science and Engineering, 2020, 84:103699. doi: 10.1016/j.jngse.2020.103699 [12] 王敬朋, 熊友明, 路宗羽, 等. 超深井抗盐高密度固井水泥浆技术[J]. 钻井液与完井液,2021,38(5):634-640.WANG Jingpeng, XIONG Youming, LU Zongyu, et al. Study on salt-resistant high density cement slurry technology for ultra-deep wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):634-640. [13] 沈华, 刘震, 史原鹏, 等. 河套盆地临河坳陷油气成藏过程解剖及勘探潜力分析[J]. 现代地质,2021,35(3):871-882.SHEN Hua, LIU Zhen, SHI Yuanpeng, et al. Hydrocarbon accumulation process and exploration potential in Linhe depression, Hetao basin[J]. Geoscience, 2021, 35(3):871-882. [14] 赵军. 高温高密度水泥浆配方设计难点及对策[J]. 内蒙古石油化工,2018,44(4):41-44. doi: 10.3969/j.issn.1006-7981.2018.04.015ZHAO Jun. Difficulties and countermeasures in the formula design of high temperature and high density cement slurry[J]. Inner Mongolia Petrochemical Industry, 2018, 44(4):41-44. doi: 10.3969/j.issn.1006-7981.2018.04.015 [15] 林鑫, 刘硕琼, 夏修建, 等. 环氧磷酸缓凝剂研发及抗220℃常规密度水泥浆综合性能[J]. 钻井液与完井液,2024,41(2):215-219.LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Development of an epoxy phosphate retarder and a high temperature cement slurry resistant to 220℃[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):215-219. [16] 舒福昌, 向兴金, 林科雄, 等. 高密度防气窜水泥浆[J]. 天然气工业,2007,27(8):72-74.SHU Fuchang, XIANG Xingjin, LIN Kexiong, et al. High-density cement slurry combating gas migration[J]. Natural Gas Industry, 2007, 27(8):72-74. [17] 张国光, 王春雨, 代丹, 等. 高温高压下石英砂粒径对油井水泥石性能的影响[J]. 钻井液与完井液,2022,39(4):466-471.ZHANG Guoguang, WANG Chunyu, DAI Dan, et al. The effects of particle size of silica flour on the performance of oil well cement at high temperature and high pressure[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):466-471. [18] 肖京男, 李小江, 周仕明, 等. 干热岩超高温防衰退水泥浆体系及应用[J]. 钻井液与完井液,2024,41(1):92-97.XIAO Jingnan, LI Xiaojiang, ZHOU Shiming, et al. Ultra-high temperature Resistant cement slurry and its application in hot dry rock[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):92-97. [19] LI J Q, ZHANG W X, GARBEV K, et al. Influences of cross-linking and al incorporation on the intrinsic mechanical properties of tobermorite[J]. Cement and Concrete Research, 2020, 136:106170. doi: 10.1016/j.cemconres.2020.106170 [20] 张弛, 陈小旭, 李长坤, 等. 抗高温硅酸盐水泥浆体系研究[J]. 钻井液与完井液,2017,34(5):62-66.ZHANG Chi, CHEN Xiaoxu, LI Changkun, et al. Study of high temperature silicate cement slurry[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):62-66. [21] 罗跃, 郑晶, 赵林. 国内外油井水泥浆降失水剂的研究进展[J]. 精细石油化工,1990,7(5):6-10.LUO Yue, ZHENG Jing, ZHAO Lin. Research progress on water loss reducing agents for oil well cement slurry at home and abroad[J]. Speciality Petrochemicals, 1990, 7(5):6-10. [22] 夏修建, 于永金, 靳建洲, 等. 耐高温抗盐固井降失水剂的制备及性能研究[J]. 钻井液与完井液,2019,36(5):610-616.XIA Xiujian, YU Yongjin, JIN Jianzhou, et al. Development and study on a high temperature salt resistant filter loss reducer for well cementing[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):610-616. [23] 郭锦棠, 刘振兴, 何军, 等. 新型耐温抗盐降失水剂LX-1的研制与性能评价[J]. 天津大学学报(自然科学与工程技术版),2021,54(3):318-323.GUO Jintang, LIU Zhenxing, HE Jun, et al. Development and performance evaluation of a new temperature and salt resistant water loss agent LX-1[J]. Journal of Tianjin University (Science and Technology), 2021, 54(3):318-323. [24] 林鑫, 刘硕琼, 夏修建, 等. 热引发聚合方法制备抗240℃水泥浆降失水剂[J]. 钻井液与完井液,2024,41(1):98-104.LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Preparation of a 240℃ cement slurry filter loss reducer prepared through thermal initiation polymerization[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):98-104. [25] 于永金, 薛毓铖, 夏修建, 等. 一种抗240℃超高温固井缓凝剂的研发与评价[J]. 天然气工业,2023,43(3):107-112.YU Yongjin, XUE Yucheng, XIA Xiujian, et al. Research & development and evaluation of a cementing retarder resistant to 240℃ ultra-high temperature[J]. Natural Gas Industry, 2023, 43(3):107-112. [26] 郭鹏飞, 余燕华, 黄永毅. 不同缓凝剂的缓凝效果及其对水泥水化的影响[J]. 新型建筑材料,2022,49(4):22-25.GUO Pengfei, YU Yanhua, HUANG Yongyi. The retarding effect of different retarders and their influence on cement hydration[J]. New Building Materials, 2022, 49(4):22-25. [27] NWAICHI P I, RIDZUAN N, NWAICHI E O, et al. Recent advances and prospects on retarder application in oilwell cement: a review[J]. Geoenergy Science and Engineering, 2024, 241:213103. doi: 10.1016/j.geoen.2024.213103 [28] 李小林, 李剑华, 杨红滨, 等. 基于热增黏共聚物的高密度水泥浆高温稳定剂[J]. 钻井液与完井液,2022,39(1):76-81. doi: 10.12358/j.issn.1001-5620.2022.01.013LI Xiaolin, LI Jianhua, YANG Hongbin, et al. Study on thermally viscosifying copolymer as a high temperature stabilizer for high density cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):76-81. doi: 10.12358/j.issn.1001-5620.2022.01.013 [29] 武磊, 赵宝辉, 侯薇, 等. 油井水泥悬浮剂的研究进展[J]. 油田化学,2023,40(4):736-742.WU Lei, ZHAO Baohui, HOU Wei, et al. Research progress of oil well cement suspension[J]. Oilfield Chemistry, 2023, 40(4):736-742. [30] 罗敏, 黄盛, 何旭晟, 等. 耐200℃固井水泥用悬浮剂的制备与性能表征[J]. 钻井液与完井液,2022,39(4):472-480.LUO Min, HUANG Sheng, HE Xusheng, et al. The preparation and performance characterization of a cement suspending agent resistant to 200℃[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):472-480. [31] 邓正强, 张涛, 黄平, 等. 一种抗高温梳型两性离子聚合物降黏剂[J]. 钻井液与完井液,2024,41(2):178-183.DENG Zhengqiang, ZHANG Tao, HUANG Ping, et al. A high temperature comb and zwitterionic polymer thinner[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):178-183. [32] 时宇, 罗小东, 彭丙杰, 等. 基于最紧密堆积理论的自密实混凝土制备与性能研究[J]. 混凝土与水泥制品,2023(9):17-22.SHI Yu, LUO Xiaodong, PENG Bingjie, et al. Preparation and performance research of self-compacting concrete based on dense packing theory[J]. China Concrete and Cement Products, 2023(9):17-22. [33] 刘康宁, 尹天一, 余睿. 超高性能混凝土颗粒紧密堆积理论优化探索[J]. 建筑材料学报,2023,26(7):739-745. doi: 10.3969/j.issn.1007-9629.2023.07.006LIU Kangning, YIN Tianyi, YU Rui. Optimization exploration of particle close packing theory in ultra-high performance concrete[J]. Journal of building materials, 2023, 26(7):739-745. doi: 10.3969/j.issn.1007-9629.2023.07.006 [34] 周敏. 基于颗粒湿紧密堆积的超高性能混凝土基体组成设计[D]. 长沙: 湖南大学, 2022.ZHOU Min. Mixture design method of ultra-high-performance concrete matrix based on wet close particle packing[D]. Changsha: Hunan University, 2022. [35] ZHENG Y, SUN D, FENG Q, et al. Nano-SiO2 modified basalt fiber for enhancing mechanical properties of oil well cement[J]. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2022, 648:128900. doi: 10.1016/j.colsurfa.2022.128900 [36] HUA S D, WANG K J, YAO X. Developing high performance phosphogypsum-based cementitious materials for oil-well cementing through a step-by-step optimization method[J]. Cement and Concrete Composites, 2016, 72:299-308. doi: 10.1016/j.cemconcomp.2016.05.017 [37] JIANG T, GENG C Z, YAO X, et al. Long-term thermal performance of oil well cement modified by silica flour with different particle sizes in HTHP environment[J]. Construction and Building Materials, 2021, 296:123701. doi: 10.1016/j.conbuildmat.2021.123701 [38] 王彦集. 纳米SiO2/CaCO3/Al2O3对油井水泥石高温力学性能的影响规律及机理[D]. 青岛: 中国石油大学(华东), 2020.WANG Yanji. Effect of nano SiO2/CaCO3/Al2O3 on mechanical properties of oil well cement under high temperature[D]. Qingdao: China University of Petroleum(East China), 2020. -