留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巴彦油田深层高温高密度韧性水泥浆体系构建

段永强 王秀影 罗玉财 罗敏 孙德 黄盛 李早元

段永强,王秀影,罗玉财,等. 巴彦油田深层高温高密度韧性水泥浆体系构建[J]. 钻井液与完井液,2025,42(3):368-378 doi: 10.12358/j.issn.1001-5620.2025.03.013
引用本文: 段永强,王秀影,罗玉财,等. 巴彦油田深层高温高密度韧性水泥浆体系构建[J]. 钻井液与完井液,2025,42(3):368-378 doi: 10.12358/j.issn.1001-5620.2025.03.013
DUAN Yongqiang, WANG Xiuying, LUO Yucai, et al.Construction of a deep high-temperature high-density resilient cement slurry system for the bayan oilfield[J]. Drilling Fluid & Completion Fluid,2025, 42(3):368-378 doi: 10.12358/j.issn.1001-5620.2025.03.013
Citation: DUAN Yongqiang, WANG Xiuying, LUO Yucai, et al.Construction of a deep high-temperature high-density resilient cement slurry system for the bayan oilfield[J]. Drilling Fluid & Completion Fluid,2025, 42(3):368-378 doi: 10.12358/j.issn.1001-5620.2025.03.013

巴彦油田深层高温高密度韧性水泥浆体系构建

doi: 10.12358/j.issn.1001-5620.2025.03.013
基金项目: 中国石油天然气股份有限公司项目“超深层高温高压井钻井关键技术研究与试验”(2023ZZ14YJ06);华北油田公司重大科技专项“ 河套盆地油气成藏富集规律与高效勘探关键技术研究”(2024-HB-ZD01);华北油田公司科研项目“华北油田固井质量提升工程技术研究与应用”(2024-HB-D02)。
详细信息
    作者简介:

    段永强,高级工程师,1972年生,1991年毕业于西南石油大学石油工程专业,主要从事石油工程技术研究与管理工作。E-mail:cy4_dyq@petrochina.com.cn

    通讯作者:

    李早元,E-mail:swpilzy@swpu.edu.cn

  • 中图分类号: TE256

Construction of a deep high-temperature high-density resilient cement slurry system for the bayan oilfield

  • 摘要: 针对巴彦-河套盆地井深6000 m以上的膏盐层,井底循环温度180℃左右,常规的高温高密度水泥浆存在流变性和稳定性差,失水量大,稠化时间难以调控、早期强度发育缓慢等技术难题,急需研发出密度为2.30~2.50 g/cm3的耐盐高温高密度韧性水泥浆体系。针对水泥浆外加剂以“无机纳米颗粒+聚合物弱交联”结构设计制备出降失水剂(LHF)、“强吸附阳离子单体+阴离子单体”制备出缓凝剂(LHR)和“温敏缔合+微交联”结构设计制备出悬浮稳定剂(LHX)分别调控水泥浆的失水量,稠化时间,沉降稳定性;依靠紧密堆积理论,采用Dinger与Funk对Andrease方程进行修正的MAA模型,以铁矿粉为主,GM-1为辅作为加重剂构建密度为2.30、2.40和2.50 g/cm3的高密度水泥浆体系,颗粒之间以滚珠形式相接触,降低摩阻;针对早期水泥石力学性能发展缓慢,分别引入增强剂和增韧剂,从纳米尺度、微米尺度两方面增加水泥石的力学性能:一部分填充孔隙,另一部分充当骨架结构,形成类似于“钢筋混泥土”构型,降低了水泥石的脆性。最终形成密度为2.30、2.40和2.50 g/cm3的水泥浆体系,该体系流变性好,稳定性高,失水量小于50 mL,稠化时间可调。

     

  • 图  1  不同加量不同温度下降失水剂水泥浆性能

    图  2  不同加量缓凝剂水泥浆性能

    图  3  不同悬浮稳定剂加量对水泥浆沉降稳定性影响

    图  4  原始材料的粒径分布图

    图  5  原始材料的粒径分布图

    图  6  不同密度水泥浆在180℃环境下的稠化时间

    图  7  水泥石早期顶部和底部强度

    图  8  水泥石的抗拉强度

    图  9  水泥石的弹性模量

    注:A、B、C分别为密度为2.30、2.40、2.50 g/cm3加有LHS-CW的水泥石;A1、B1、C1分别为密度为2.30、2.40、2.50 g/cm3未加LHS-CW的水泥石。

    图  10  不同密度水泥石的孔隙结构

    注:A、B、C分别为密度为2.30、2.40、2.50 g/cm3加有LHS-CW的水泥石;A1、B1、C1分别为密度为2.30、2.40、2.50 g/cm3未加LHS-CW的水泥石。

    图  11  不同密度水泥石的水化产物

    注:A、B、C分别为密度为2.30、2.40、2.50 g/cm3加有LHS-CW的水泥石;A1、B1、C1分别为密度为2.30、2.40、2.50 g/cm3未加LHS-CW的水泥石。

    表  1  不同密度水泥浆性能

    ρ/
    g·cm−3
    T/℃ 流动度/cm ρ/
    g·cm−3
    2.30 常温 22.0
    180℃降至90℃ 0.02
    2.40 常温 21.0
    180℃降至90℃ 0.03
    2.50 常温
    180℃降至90℃ 20.5 0.04
    下载: 导出CSV

    表  3  不同密度水泥浆稠化性能

    ρ/
    g·cm−3
    T/
    LHR/
    %
    LHF/
    %
    LHX/
    %
    t稠化/
    min
    FL/
    mL
    2.30 180 2 2.5 0.5 403 24.3
    2.40 180 2 2.0 1.0 524 21.6
    2.50 180 1 2.5 1.0 575 21.4
    下载: 导出CSV

    表  2  不同密度水泥浆流变性能

    ρ/
    g·cm−3
    不同转速(s−1)对应读数 K/
    Pa·sn
    n
    φ3 φ6 φ100 φ200 φ300 φ600
    2.30 5 10 124 195 258 0.66 0.86
    2.40 7 12 135 212 262 0.96 0.81
    2.50 6 15 155 235 285 0.94 0.83
    下载: 导出CSV
  • [1] 冯志强, 孔祥宇, 褚王涛. 中国油气供应安全面临新挑战——新形势下中国石油企业“走出去”发展战略思考[J]. 国际石油经济,2019,27(10):8-15.

    FENG Zhiqiang, KONG Xiangyu, CHU Wangtao. New challenges in China's oil and gas supply security——the "going global" development strategy for China's petroleum enterprises under the new situation[J]. International Petroleum Economics, 2019, 27(10):8-15.
    [2] 蔡勋育, 刘金连, 张宇, 等. 中国石化“十三五”油气勘探进展与“十四五”前景展望[J]. 中国石油勘探,2021,26(1):31-42.

    CAI Xunyu, LIU Jinlian, ZHANG Yu, et al. Oil and gas exploration progress of Sinopec during the 13th five-year plan period and prospect forecast for the 14th five-year plan[J]. China Petroleum Exploration, 2021, 26(1):31-42.
    [3] 袁光杰, 付利, 王元, 等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1-12.

    YUAN Guangjie, FU Li, WANG Yuan, et al. The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1):1-12.
    [4] 许勤华, 李文琪. 全球碳中和背景下的中国能源安全方略[J]. 南通大学学报(社会科学版),2023,39(1):117-129.

    XU Qinhua, LI Wenqi. China's energy security strategy in the context of global carbon neutrality[J]. Journal of Nantong University (Social Sciences Edition), 2023, 39(1):117-129.
    [5] 孙长远, 李红欣. 中国石油供给安全分析[J]. 石家庄经济学院学报,2006,29(2):174-177.

    SUN Changyuan, LI Hongxin. Analysis on China's petroleum supply security[J]. Journal of Shijiazhuang University of Economics, 2006, 29(2):174-177.
    [6] 雷群, 翁定为, 罗健辉, 等. 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发,2019,46(1):139-145.

    LEI Qun, WENG Dingwei, LUO Jianhui, et al. Achievements and future work of oil and gas production engineering of CNPC[J]. Petroleum Exploration and Development, 2019, 46(1):139-145.
    [7] 刘锋报, 孙金声, 刘敬平, 等. 抗超高温220℃聚合物水基钻井液技术[J]. 钻井液与完井液,2024,41(2):148-154.

    LIU Fengbao, SUN Jinsheng, LIU Jingping, et al. A polymer water based drilling fluid for 220℃ bottomhole temperature[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):148-154.
    [8] 张玉平, 杨远光, 宋元洪, 等. 超高温超高密度防气窜水泥浆[J]. 钻井液与完井液,2015,32(4):51-54.

    ZHANG Yuping, YANG Yuanguang, SONG Yuanhong, et al. Ultra high temperature and ultra-high density anti gas channeling cement slurry[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):51-54.
    [9] 闫睿昶, 徐明, 虞海法, 等. 巴彦河套盆地复杂储层固井技术[J]. 钻井液与完井液,2023,40(1):82-88.

    YAN Ruichang, XU Ming, YU Haifa, et al. Well cementing technology for complex reservoirs in the Bayan Hetao basin[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):82-88.
    [10] 李凯, 王孝超, 陈猛如, 等. 巴彦河套盆地片麻岩储层改造工艺研究及应用[J]. 中国矿业,2020,29(7):158-162.

    LI Kai, WANG Xiaochao, CHEN Mengru, et al. Study and application of gneiss reservoir reconstruction technology in the Bayanhetao basin[J]. China Mining Magazine, 2020, 29(7):158-162.
    [11] GUO S L, BU Y H, ZHOU A N, et al. A three components thixotropic agent to enhance the thixotropic property of natural gas well cement at high temperatures[J]. Journal of Natural Gas Science and Engineering, 2020, 84:103699. doi: 10.1016/j.jngse.2020.103699
    [12] 王敬朋, 熊友明, 路宗羽, 等. 超深井抗盐高密度固井水泥浆技术[J]. 钻井液与完井液,2021,38(5):634-640.

    WANG Jingpeng, XIONG Youming, LU Zongyu, et al. Study on salt-resistant high density cement slurry technology for ultra-deep wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):634-640.
    [13] 沈华, 刘震, 史原鹏, 等. 河套盆地临河坳陷油气成藏过程解剖及勘探潜力分析[J]. 现代地质,2021,35(3):871-882.

    SHEN Hua, LIU Zhen, SHI Yuanpeng, et al. Hydrocarbon accumulation process and exploration potential in Linhe depression, Hetao basin[J]. Geoscience, 2021, 35(3):871-882.
    [14] 赵军. 高温高密度水泥浆配方设计难点及对策[J]. 内蒙古石油化工,2018,44(4):41-44. doi: 10.3969/j.issn.1006-7981.2018.04.015

    ZHAO Jun. Difficulties and countermeasures in the formula design of high temperature and high density cement slurry[J]. Inner Mongolia Petrochemical Industry, 2018, 44(4):41-44. doi: 10.3969/j.issn.1006-7981.2018.04.015
    [15] 林鑫, 刘硕琼, 夏修建, 等. 环氧磷酸缓凝剂研发及抗220℃常规密度水泥浆综合性能[J]. 钻井液与完井液,2024,41(2):215-219.

    LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Development of an epoxy phosphate retarder and a high temperature cement slurry resistant to 220℃[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):215-219.
    [16] 舒福昌, 向兴金, 林科雄, 等. 高密度防气窜水泥浆[J]. 天然气工业,2007,27(8):72-74.

    SHU Fuchang, XIANG Xingjin, LIN Kexiong, et al. High-density cement slurry combating gas migration[J]. Natural Gas Industry, 2007, 27(8):72-74.
    [17] 张国光, 王春雨, 代丹, 等. 高温高压下石英砂粒径对油井水泥石性能的影响[J]. 钻井液与完井液,2022,39(4):466-471.

    ZHANG Guoguang, WANG Chunyu, DAI Dan, et al. The effects of particle size of silica flour on the performance of oil well cement at high temperature and high pressure[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):466-471.
    [18] 肖京男, 李小江, 周仕明, 等. 干热岩超高温防衰退水泥浆体系及应用[J]. 钻井液与完井液,2024,41(1):92-97.

    XIAO Jingnan, LI Xiaojiang, ZHOU Shiming, et al. Ultra-high temperature Resistant cement slurry and its application in hot dry rock[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):92-97.
    [19] LI J Q, ZHANG W X, GARBEV K, et al. Influences of cross-linking and al incorporation on the intrinsic mechanical properties of tobermorite[J]. Cement and Concrete Research, 2020, 136:106170. doi: 10.1016/j.cemconres.2020.106170
    [20] 张弛, 陈小旭, 李长坤, 等. 抗高温硅酸盐水泥浆体系研究[J]. 钻井液与完井液,2017,34(5):62-66.

    ZHANG Chi, CHEN Xiaoxu, LI Changkun, et al. Study of high temperature silicate cement slurry[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):62-66.
    [21] 罗跃, 郑晶, 赵林. 国内外油井水泥浆降失水剂的研究进展[J]. 精细石油化工,1990,7(5):6-10.

    LUO Yue, ZHENG Jing, ZHAO Lin. Research progress on water loss reducing agents for oil well cement slurry at home and abroad[J]. Speciality Petrochemicals, 1990, 7(5):6-10.
    [22] 夏修建, 于永金, 靳建洲, 等. 耐高温抗盐固井降失水剂的制备及性能研究[J]. 钻井液与完井液,2019,36(5):610-616.

    XIA Xiujian, YU Yongjin, JIN Jianzhou, et al. Development and study on a high temperature salt resistant filter loss reducer for well cementing[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):610-616.
    [23] 郭锦棠, 刘振兴, 何军, 等. 新型耐温抗盐降失水剂LX-1的研制与性能评价[J]. 天津大学学报(自然科学与工程技术版),2021,54(3):318-323.

    GUO Jintang, LIU Zhenxing, HE Jun, et al. Development and performance evaluation of a new temperature and salt resistant water loss agent LX-1[J]. Journal of Tianjin University (Science and Technology), 2021, 54(3):318-323.
    [24] 林鑫, 刘硕琼, 夏修建, 等. 热引发聚合方法制备抗240℃水泥浆降失水剂[J]. 钻井液与完井液,2024,41(1):98-104.

    LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Preparation of a 240℃ cement slurry filter loss reducer prepared through thermal initiation polymerization[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):98-104.
    [25] 于永金, 薛毓铖, 夏修建, 等. 一种抗240℃超高温固井缓凝剂的研发与评价[J]. 天然气工业,2023,43(3):107-112.

    YU Yongjin, XUE Yucheng, XIA Xiujian, et al. Research & development and evaluation of a cementing retarder resistant to 240℃ ultra-high temperature[J]. Natural Gas Industry, 2023, 43(3):107-112.
    [26] 郭鹏飞, 余燕华, 黄永毅. 不同缓凝剂的缓凝效果及其对水泥水化的影响[J]. 新型建筑材料,2022,49(4):22-25.

    GUO Pengfei, YU Yanhua, HUANG Yongyi. The retarding effect of different retarders and their influence on cement hydration[J]. New Building Materials, 2022, 49(4):22-25.
    [27] NWAICHI P I, RIDZUAN N, NWAICHI E O, et al. Recent advances and prospects on retarder application in oilwell cement: a review[J]. Geoenergy Science and Engineering, 2024, 241:213103. doi: 10.1016/j.geoen.2024.213103
    [28] 李小林, 李剑华, 杨红滨, 等. 基于热增黏共聚物的高密度水泥浆高温稳定剂[J]. 钻井液与完井液,2022,39(1):76-81. doi: 10.12358/j.issn.1001-5620.2022.01.013

    LI Xiaolin, LI Jianhua, YANG Hongbin, et al. Study on thermally viscosifying copolymer as a high temperature stabilizer for high density cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):76-81. doi: 10.12358/j.issn.1001-5620.2022.01.013
    [29] 武磊, 赵宝辉, 侯薇, 等. 油井水泥悬浮剂的研究进展[J]. 油田化学,2023,40(4):736-742.

    WU Lei, ZHAO Baohui, HOU Wei, et al. Research progress of oil well cement suspension[J]. Oilfield Chemistry, 2023, 40(4):736-742.
    [30] 罗敏, 黄盛, 何旭晟, 等. 耐200℃固井水泥用悬浮剂的制备与性能表征[J]. 钻井液与完井液,2022,39(4):472-480.

    LUO Min, HUANG Sheng, HE Xusheng, et al. The preparation and performance characterization of a cement suspending agent resistant to 200℃[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):472-480.
    [31] 邓正强, 张涛, 黄平, 等. 一种抗高温梳型两性离子聚合物降黏剂[J]. 钻井液与完井液,2024,41(2):178-183.

    DENG Zhengqiang, ZHANG Tao, HUANG Ping, et al. A high temperature comb and zwitterionic polymer thinner[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):178-183.
    [32] 时宇, 罗小东, 彭丙杰, 等. 基于最紧密堆积理论的自密实混凝土制备与性能研究[J]. 混凝土与水泥制品,2023(9):17-22.

    SHI Yu, LUO Xiaodong, PENG Bingjie, et al. Preparation and performance research of self-compacting concrete based on dense packing theory[J]. China Concrete and Cement Products, 2023(9):17-22.
    [33] 刘康宁, 尹天一, 余睿. 超高性能混凝土颗粒紧密堆积理论优化探索[J]. 建筑材料学报,2023,26(7):739-745. doi: 10.3969/j.issn.1007-9629.2023.07.006

    LIU Kangning, YIN Tianyi, YU Rui. Optimization exploration of particle close packing theory in ultra-high performance concrete[J]. Journal of building materials, 2023, 26(7):739-745. doi: 10.3969/j.issn.1007-9629.2023.07.006
    [34] 周敏. 基于颗粒湿紧密堆积的超高性能混凝土基体组成设计[D]. 长沙: 湖南大学, 2022.

    ZHOU Min. Mixture design method of ultra-high-performance concrete matrix based on wet close particle packing[D]. Changsha: Hunan University, 2022.
    [35] ZHENG Y, SUN D, FENG Q, et al. Nano-SiO2 modified basalt fiber for enhancing mechanical properties of oil well cement[J]. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2022, 648:128900. doi: 10.1016/j.colsurfa.2022.128900
    [36] HUA S D, WANG K J, YAO X. Developing high performance phosphogypsum-based cementitious materials for oil-well cementing through a step-by-step optimization method[J]. Cement and Concrete Composites, 2016, 72:299-308. doi: 10.1016/j.cemconcomp.2016.05.017
    [37] JIANG T, GENG C Z, YAO X, et al. Long-term thermal performance of oil well cement modified by silica flour with different particle sizes in HTHP environment[J]. Construction and Building Materials, 2021, 296:123701. doi: 10.1016/j.conbuildmat.2021.123701
    [38] 王彦集. 纳米SiO2/CaCO3/Al2O3对油井水泥石高温力学性能的影响规律及机理[D]. 青岛: 中国石油大学(华东), 2020.

    WANG Yanji. Effect of nano SiO2/CaCO3/Al2O3 on mechanical properties of oil well cement under high temperature[D]. Qingdao: China University of Petroleum(East China), 2020.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 修回日期:  2025-03-04
  • 刊出日期:  2025-06-12

目录

    /

    返回文章
    返回