Rheological Parameter Calibration of Online Drilling Fluid Property Monitoring System
-
摘要: 在钻井作业过程中,准确快速测量钻井液流变性能对于安全高效钻井至关重要。管流法可以实时监测钻井液各项流变性,但壁面滑移现象会严重影响测量的准确性。基于此问题,深入探讨了管流与滑移影响间的关系,并提出了一种基于管流法的流变性校准方法。该方法使用管流式测量方法,对数据使用门尼和正则化方法获得滑移速度,时间加窗形成有序数据,并构建了WOA-SVR滑移速度预测模型,再通过滑移速度对壁面剪切率和广义流性指数进行了修正。最终,校准了钻井液流变参数,流变参数输出值准确度提高了75.01%。该研究成果已在塔里木、新疆、华北等油田应用,仪器测量结果与手动取样分析结果高度吻合,验证了该方法的有效性和实用性。该方法为钻井液性能在线监测系统流变参数的综合评估提供可靠的数据支持,对于提升钻井作业的效率和安全性意义重大。Abstract: In drilling operations, accurate and fast measurement of drilling fluid rheology is essential for safe and efficient drilling. Pipe flow method can monitor the rheological properties of drilling fluids in a real time manner, wall slip phenomenon can seriously affect the accuracy of the measurement though. To deal with this problem, the relationship between pipe flow and the effects of wall slip is discussed in depth, and a rheology calibration method based on pipe flow method is presented. In this method, the measurement is conducted using pipe flow method, the slip velocity is obtained using Mooney and regularization method on the data acquired, time is windowed to form ordered data, and a modal named WOA-SVR for predicting slip velocity is constructed. The shear rate on the wall and the generalized flow index are then corrected using the slip velocity obtained. Using this method, the rheological properties of a drilling fluid are calibrated and the accuracy of the output rheological properties is increased by 75.01%. The results of this study have been used in Tarim, Xinjiang and Huabei oilfields, the instrument measurement results are highly consistent with the results obtained by analyzing the manual samples, indicating that this method is both effective and practical. This method can provide reliable data support for the comprehensive evaluation of the rheological parameters for the online monitoring system of drilling fluid properties, and is of great significance to the improvement of drilling efficiency and safety.
-
表 1 样品的壁滑移处理结果
Q/(m3/h) τw/Pa τwc/Pa Vslip/(m/s) 0.43 8.3517 6.7561 0.001 818 0.51 8.4390 0.001 911 0.60 9.3808 0.002 891 0.75 11.0436 0.004 566 0.82 11.8547 0.005 366 1.04 12.9040 0.006 388 1.07 14.0291 0.007 470 1.27 17.1570 0.010 424 注:Vslip=0.00117667(τw−τwc)0.9315。 表 2 样本全球历史值的相关分析
t $r_{V_{\text {slip }}(t, t+8) \tau_{\mathrm{w}}(t, t+8)} $ t $ r_{V_{\text {slip }}(t, t+8) \tau_{\mathrm{w}}(t, t+8)} $ 1 99.982 5 44.297 2 59.819 6 35.953 3 47.990 7 61.546 4 33.462 8 74.511 表 3 时间窗口函数处理后的特征参数设置
τw(t)/
PaVslip(t)/
m/sVslip(t+1)/
m/sVslip(t+2)/
m/sVslip(t+3)/
m/s8.3517 0.0182 0.0019 0.0029 0.0046 8.4390 0.0019 0.0029 0.0046 0.0054 9.3808 0.0029 0.0046 0.0054 0.0064 11.0436 0.0046 0.0054 0.0064 0.0075 11.8547 0.0054 0.0064 0.0075 0.0104 12.9041 0.0064 0.0075 0.0010 0.0050 14.0291 0.0075 0.0104 0.0050 0.0066 17.1570 0.0104 0.0050 0.0066 0.0073 表 4 模型误差指数
Model MAE/(m/s) MSE/(m/s)2 RMSE/(m/s) R2 SVR 0.0039 0.0000 0.0045 0.6789 WOA-SVR 0.0014 0.0000 0.0014 0.9291 PSO-SVR 0.0031 0.0000 0.0038 0.4670 -
[1] 孙金声, 王韧, 龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30. doi: 10.12358/j.issn.1001-5620.2024.01.001SUN Jinsheng, WANG Ren, LONG Yifu. Technical challenges, new progress and development suggestions of drilling fluids in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30. doi: 10.12358/j.issn.1001-5620.2024.01.001 [2] 王中华. 国内钻井液处理剂研究进展、现状分析与发展建议[J]. 钻井液与完井液,2025,42(1):1-19.WANG Zhonghua. Research progress, current situation analysis and development suggestions of drilling fluid treatment agents in China[J]. Drilling Fluid & Completion Fluid, 2025, 42(1):1-19 [3] 朱忠伟, 纪宏博. 松驰测量法评价钻井液携岩性能[J]. 钻井液与完井液,2004,21(4):23-25. doi: 10.3969/j.issn.1001-5620.2004.04.008ZHU Zhongwei, JI Hongbo. Relaxation measurements to evaluate cuttings carrying capacity of drilling fluid[J]. Drilling Fluid & Completion Fluid, 2004, 21(4):23-25. doi: 10.3969/j.issn.1001-5620.2004.04.008 [4] 张志财, 刘保双, 王忠杰, 等. 钻井液性能在线监测系统的研制与现场应用[J]. 钻井液与完井液,2020,37(5):597-601,607.ZHANG Zhicai, LIU Baoshuang, WANG Zhongjie, et al. Development and field application of an online drilling fluid property monitoring system[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):597-601,607. [5] 梁海波, 宋洋, 于志刚, 等. 钻井液流变性实时测量方法及系统研究[J]. 石油机械,2022,50(1):10-18.LIANG Haibo, SONG Yang, YU Zhigang, et al. Real-time measurement method and systematic study on drilling fluid rheology[J]. China Petroleum Machinery, 2022, 50(1):10-18. [6] 王鹏, 刘伟, 张果. 钻井液性能自动监测装置的现状及改进建议[J]. 钻采工艺,2022,45(3):42-47.WANG Peng, LIU Wei, ZHANG Guo. Status quo and improvement suggestions of automatic monitoring equipment for drilling fluid performance[J]. Drilling & Production Technology, 2022, 45(3):42-47 [7] MEGHDADI A, JONES S A, PATEL V A, et al. Foam-in-vein: Rheological characterisation of liquid sclerosing foams using a pipe viscometer[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2022, 645:128916. [8] SHAH S N, SHANKER N H, OGUGBUE C C. Future challenges of drilling fluids and their rheological measurements[C]//AADE fluids conference and exhibition. Houston, Texas, 2010: 5-7. [9] 李文哲, 钟成旭, 蒋雪梅, 等. 考虑壁面滑移效应的高密度油基钻井液流变性研究[J]. 石油钻探技术,2020,48(6):28-32. doi: 10.11911/syztjs.2020085LI Wenzhe, ZHONG Chengxu, JIANG Xuemei, et al. Study of the rheological properties of high-density oil-based drilling fluid considering wall slip effect[J]. Petroleum Drilling Techniques, 2020, 48(6):28-32. doi: 10.11911/syztjs.2020085 [10] LIU N P, GAO H, XU Y, et al. Design and use of an online drilling fluid pipe viscometer[J]. Flow Measurement and Instrumentation, 2022, 87:102224. doi: 10.1016/j.flowmeasinst.2022.102224 [11] WIŚNIOWSKI R, SKRZYPASZEK K, TOCZEK P. Vom Berg and Hahn–eyring drilling fluid rheological models[J]. Energies, 2022, 15(15):5583. doi: 10.3390/en15155583 [12] XU Z S, LI Z G, JIANG F. Numerical approach to pipe flow of fresh concrete based on MPS method[J]. Cement and Concrete Research, 2022, 152:106679. doi: 10.1016/j.cemconres.2021.106679 [13] GUPTA S, VANAPALLI S A. Microfluidic shear rheology and wall-slip of viscoelastic fluids using holography-based flow kinematics[J]. Physics of Fluids, 2020, 32(1):012006. doi: 10.1063/1.5135712 [14] 王贵, 蒲晓林, 罗兴树, 等. 考虑滑移效应的高密度水基钻井液流变性[J]. 石油学报,2011,32(3):539-542. doi: 10.7623/syxb201103028WANG Gui, PU Xiaolin, LUO Xingshu, et al. Rheological behaviors of the high-density water-based drilling fluid in consideration of slip effect[J]. Acta Petrolei Sinica, 2011, 32(3):539-542. doi: 10.7623/syxb201103028 [15] 陆海瑛, 冯巍, 赵俊, 等. 考虑壁面滑移效应的水基微泡沫钻井液流变特性[J]. 新疆石油天然气,2021,17(4):8-14. doi: 10.3969/j.issn.1673-2677.2021.04.003LU Haiying, FENG Wei, ZHAO Jun, et al. Rheological properties of water based micro foam drilling fluids considering the wall slip effect[J]. Xinjiang Oil & Gas, 2021, 17(4):8-14. doi: 10.3969/j.issn.1673-2677.2021.04.003 [16] MOONEY M. Explicit formulas for slip and fluidity[J]. Journal of Rheology, 1931, 2(2):210-222. doi: 10.1122/1.2116364 [17] MOURNIAC P, AGASSANT J F, VERGNES B. Determination of the wall slip velocity in the flow of a SBR compound[J]. Rheologica Acta, 1992, 31(6):565-574. doi: 10.1007/BF00367011 [18] WANG L J, LIU J Y, YAN Y, et al. Gas-liquid two-phase flow measurement using coriolis flowmeters incorporating artificial neural network, support vector machine, and genetic programming algorithms[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(5):852-868. doi: 10.1109/TIM.2016.2634630 [19] JIN N D, YU C, HAN Y F, et al. The performance characteristics of electromagnetic flowmeter in vertical Low-Velocity Oil-Water Two-Phase flow[J]. IEEE Sensors Journal, 2021, 21(1):464-475. doi: 10.1109/JSEN.2020.3013327 [20] 魏凯, 严梁柱, 方琼瑶, 等. 钻井液流变参数确定通用算法及程序设计[J]. 新疆石油天然气,2022,18(1):21-25. doi: 10.12388/j.issn.1673-2677.2022.01.003WEI Kai, YAN Liangzhu, FANG Qiongyao, et al. General algorithm and programming to determine the rheological parameters for drilling fluid[J]. Xinjiang Oil & Gas, 2022, 18(1):21-25. doi: 10.12388/j.issn.1673-2677.2022.01.003 [21] 陈丽丹, 马永良, 张哲, 等. 基于广义交叉验证和吉洪诺夫正则化参数的智能电表计量异常识别方法[J]. 南方电网技术,2023,17(5):125-133.CHEN Lidan, MA Yongliang, ZHANG Zhe, et al. Anomaly detection method of smart meter based on tikhonov regularization and generalized Cross-Validation[J]. Southern Power System Technology, 2023, 17(5):125-133. [22] BHAR I, MANDAL N. Effect of position of electrodes in polarization type flowmeter: analysis and experimental evaluation[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6):3061-3069. doi: 10.1109/TIM.2019.2931527 [23] 花靖, 蒋秀, 于超, 等. 基于改进型S VM算法的气液两相流持液率计算模型[J]. 西安石油大学学报(自然科学版),2022,37(6):103-110,118.HUA Jing, JIANG Xiu, YU Chao, et al. Liquid holdup calculation model of gas-liquid two-phase flow based on improved SVM algorithm[J]. Journal of Xi'an Shiyou University(Natural Science), 2022, 37(6):103-110,118. [24] 张金水, 田冷, 黄诗慧, 等. 基于极限梯度爬升算法与支持向量回归算法变权组合模型致密油的采收率预测[J]. 科学技术与工程,2022,22(12):4778-4787. doi: 10.3969/j.issn.1671-1815.2022.12.013ZHANG Jinshui, TIAN Leng, HUANG Shihui, et al. Tight oil recovery prediction based on extreme gradient boosting algorithm and support vector regression algorithm variable weight combination model[J]. Science Technology and Engineering, 2022, 22(12):4778-4787. doi: 10.3969/j.issn.1671-1815.2022.12.013 [25] 林恒青. 一种改进的鲸鱼优化算法在工程上的应用[J]. 兰州文理学院学报(自然科学版),2024,38(3):44-47,53.LIN Hengqing. Application of an improved whale optimization algorithm in engineering[J]. Journal of LanZhou University of Arts And Science (Natural Sciences Edition), 2024, 38(3):44-47,53. -