留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钻井液性能在线监测系统流变参数校准方法

涂留军 王建龙 郭晓冰 王韧 张伟杰 吕盛安 刘胜 杨泽星

涂留军,王建龙,郭晓冰,等. 钻井液性能在线监测系统流变参数校准方法[J]. 钻井液与完井液,2025,42(3):350-358 doi: 10.12358/j.issn.1001-5620.2025.03.011
引用本文: 涂留军,王建龙,郭晓冰,等. 钻井液性能在线监测系统流变参数校准方法[J]. 钻井液与完井液,2025,42(3):350-358 doi: 10.12358/j.issn.1001-5620.2025.03.011
TU Liujun, WANG Jianlong, GUO Xiaobing, et al.Rheological parameter calibration of online drilling fluid property monitoring system[J]. Drilling Fluid & Completion Fluid,2025, 42(3):350-358 doi: 10.12358/j.issn.1001-5620.2025.03.011
Citation: TU Liujun, WANG Jianlong, GUO Xiaobing, et al.Rheological parameter calibration of online drilling fluid property monitoring system[J]. Drilling Fluid & Completion Fluid,2025, 42(3):350-358 doi: 10.12358/j.issn.1001-5620.2025.03.011

钻井液性能在线监测系统流变参数校准方法

doi: 10.12358/j.issn.1001-5620.2025.03.011
基金项目: 中石油重大科技专项课题“装备物联与钻井风险智能管控方法研究”(2023ZZ06-03);中石油西部钻探钻井液分公司科学研究与技术开发项目“XZ-ICM钻井液性能动态监测装置研制”(2023XZ022)。
详细信息
    作者简介:

    涂留军,工程师,1980年生,毕业于吉林大学石油工程专业,现在从事钻井液技术研究工作。电话 (0990)6368286;E-mail:tlj123@cnpc.com.cn

    通讯作者:

    王建龙,E-mail:wjldr@cnpc.com.cn

  • 中图分类号: TE254

Rheological Parameter Calibration of Online Drilling Fluid Property Monitoring System

  • 摘要: 在钻井作业过程中,准确快速测量钻井液流变性能对于安全高效钻井至关重要。管流法可以实时监测钻井液各项流变性,但壁面滑移现象会严重影响测量的准确性。基于此问题,深入探讨了管流与滑移影响间的关系,并提出了一种基于管流法的流变性校准方法。该方法使用管流式测量方法,对数据使用门尼和正则化方法获得滑移速度,时间加窗形成有序数据,并构建了WOA-SVR滑移速度预测模型,再通过滑移速度对壁面剪切率和广义流性指数进行了修正。最终,校准了钻井液流变参数,流变参数输出值准确度提高了75.01%。该研究成果已在塔里木、新疆、华北等油田应用,仪器测量结果与手动取样分析结果高度吻合,验证了该方法的有效性和实用性。该方法为钻井液性能在线监测系统流变参数的综合评估提供可靠的数据支持,对于提升钻井作业的效率和安全性意义重大。

     

  • 图  1  管流法测量钻井液流变性示意图

    图  2  用于流变性校准的鲸鱼优化算法  优化支持向量回归模型流程图

    图  3  钻井液实时在线测量装置

    图  4  样本局部历史值的相关性分析输出值

    注:支持向量回归测试集预测值与真实值的对比(未加窗)。

    图  5  通过支持向量回归处理前的输出值

    注:支持向量回归测试集预测值与真实值的对比(加窗)。

    图  6  不同优化算法优化的支持向量回归输出误差比较

    图  7  WOA优化支持向量机测试集  预测值与真实值的对比图

    图  8  不同优化算法优化的支持向量回归迭代对比曲线

    图  9  支持向量回归和鲸鱼优化算法——支持向量回归误差指标的比较

    图  10  SVR、WOA-SVR输出对比

    图  11  变径管式流变性测量的测量值、校准值和真实值的比较

    表  1  样品的壁滑移处理结果

    Q/(m3/h) τw/Pa τwc/Pa Vslip/(m/s)
    0.43 8.3517 6.7561 0.001 818
    0.51 8.4390 0.001 911
    0.60 9.3808 0.002 891
    0.75 11.0436 0.004 566
    0.82 11.8547 0.005 366
    1.04 12.9040 0.006 388
    1.07 14.0291 0.007 470
    1.27 17.1570 0.010 424
      注:Vslip=0.00117667(τwτwc)0.9315
    下载: 导出CSV

    表  2  样本全球历史值的相关分析

    t$r_{V_{\text {slip }}(t, t+8) \tau_{\mathrm{w}}(t, t+8)} $t$ r_{V_{\text {slip }}(t, t+8) \tau_{\mathrm{w}}(t, t+8)} $
    199.982544.297
    259.819635.953
    347.990761.546
    433.462874.511
    下载: 导出CSV

    表  3  时间窗口函数处理后的特征参数设置

    τw(t)/
    Pa
    Vslip(t)/
    m/s
    Vslip(t+1)/
    m/s
    Vslip(t+2)/
    m/s
    Vslip(t+3)/
    m/s
    8.3517 0.0182 0.0019 0.0029 0.0046
    8.4390 0.0019 0.0029 0.0046 0.0054
    9.3808 0.0029 0.0046 0.0054 0.0064
    11.0436 0.0046 0.0054 0.0064 0.0075
    11.8547 0.0054 0.0064 0.0075 0.0104
    12.9041 0.0064 0.0075 0.0010 0.0050
    14.0291 0.0075 0.0104 0.0050 0.0066
    17.1570 0.0104 0.0050 0.0066 0.0073
    下载: 导出CSV

    表  4  模型误差指数

    Model MAE/(m/s) MSE/(m/s)2 RMSE/(m/s) R2
    SVR 0.0039 0.0000 0.0045 0.6789
    WOA-SVR 0.0014 0.0000 0.0014 0.9291
    PSO-SVR 0.0031 0.0000 0.0038 0.4670
    下载: 导出CSV
  • [1] 孙金声, 王韧, 龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30. doi: 10.12358/j.issn.1001-5620.2024.01.001

    SUN Jinsheng, WANG Ren, LONG Yifu. Technical challenges, new progress and development suggestions of drilling fluids in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30. doi: 10.12358/j.issn.1001-5620.2024.01.001
    [2] 王中华. 国内钻井液处理剂研究进展、现状分析与发展建议[J]. 钻井液与完井液,2025,42(1):1-19.

    WANG Zhonghua. Research progress, current situation analysis and development suggestions of drilling fluid treatment agents in China[J]. Drilling Fluid & Completion Fluid, 2025, 42(1):1-19
    [3] 朱忠伟, 纪宏博. 松驰测量法评价钻井液携岩性能[J]. 钻井液与完井液,2004,21(4):23-25. doi: 10.3969/j.issn.1001-5620.2004.04.008

    ZHU Zhongwei, JI Hongbo. Relaxation measurements to evaluate cuttings carrying capacity of drilling fluid[J]. Drilling Fluid & Completion Fluid, 2004, 21(4):23-25. doi: 10.3969/j.issn.1001-5620.2004.04.008
    [4] 张志财, 刘保双, 王忠杰, 等. 钻井液性能在线监测系统的研制与现场应用[J]. 钻井液与完井液,2020,37(5):597-601,607.

    ZHANG Zhicai, LIU Baoshuang, WANG Zhongjie, et al. Development and field application of an online drilling fluid property monitoring system[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):597-601,607.
    [5] 梁海波, 宋洋, 于志刚, 等. 钻井液流变性实时测量方法及系统研究[J]. 石油机械,2022,50(1):10-18.

    LIANG Haibo, SONG Yang, YU Zhigang, et al. Real-time measurement method and systematic study on drilling fluid rheology[J]. China Petroleum Machinery, 2022, 50(1):10-18.
    [6] 王鹏, 刘伟, 张果. 钻井液性能自动监测装置的现状及改进建议[J]. 钻采工艺,2022,45(3):42-47.

    WANG Peng, LIU Wei, ZHANG Guo. Status quo and improvement suggestions of automatic monitoring equipment for drilling fluid performance[J]. Drilling & Production Technology, 2022, 45(3):42-47
    [7] MEGHDADI A, JONES S A, PATEL V A, et al. Foam-in-vein: Rheological characterisation of liquid sclerosing foams using a pipe viscometer[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2022, 645:128916.
    [8] SHAH S N, SHANKER N H, OGUGBUE C C. Future challenges of drilling fluids and their rheological measurements[C]//AADE fluids conference and exhibition. Houston, Texas, 2010: 5-7.
    [9] 李文哲, 钟成旭, 蒋雪梅, 等. 考虑壁面滑移效应的高密度油基钻井液流变性研究[J]. 石油钻探技术,2020,48(6):28-32. doi: 10.11911/syztjs.2020085

    LI Wenzhe, ZHONG Chengxu, JIANG Xuemei, et al. Study of the rheological properties of high-density oil-based drilling fluid considering wall slip effect[J]. Petroleum Drilling Techniques, 2020, 48(6):28-32. doi: 10.11911/syztjs.2020085
    [10] LIU N P, GAO H, XU Y, et al. Design and use of an online drilling fluid pipe viscometer[J]. Flow Measurement and Instrumentation, 2022, 87:102224. doi: 10.1016/j.flowmeasinst.2022.102224
    [11] WIŚNIOWSKI R, SKRZYPASZEK K, TOCZEK P. Vom Berg and Hahn–eyring drilling fluid rheological models[J]. Energies, 2022, 15(15):5583. doi: 10.3390/en15155583
    [12] XU Z S, LI Z G, JIANG F. Numerical approach to pipe flow of fresh concrete based on MPS method[J]. Cement and Concrete Research, 2022, 152:106679. doi: 10.1016/j.cemconres.2021.106679
    [13] GUPTA S, VANAPALLI S A. Microfluidic shear rheology and wall-slip of viscoelastic fluids using holography-based flow kinematics[J]. Physics of Fluids, 2020, 32(1):012006. doi: 10.1063/1.5135712
    [14] 王贵, 蒲晓林, 罗兴树, 等. 考虑滑移效应的高密度水基钻井液流变性[J]. 石油学报,2011,32(3):539-542. doi: 10.7623/syxb201103028

    WANG Gui, PU Xiaolin, LUO Xingshu, et al. Rheological behaviors of the high-density water-based drilling fluid in consideration of slip effect[J]. Acta Petrolei Sinica, 2011, 32(3):539-542. doi: 10.7623/syxb201103028
    [15] 陆海瑛, 冯巍, 赵俊, 等. 考虑壁面滑移效应的水基微泡沫钻井液流变特性[J]. 新疆石油天然气,2021,17(4):8-14. doi: 10.3969/j.issn.1673-2677.2021.04.003

    LU Haiying, FENG Wei, ZHAO Jun, et al. Rheological properties of water based micro foam drilling fluids considering the wall slip effect[J]. Xinjiang Oil & Gas, 2021, 17(4):8-14. doi: 10.3969/j.issn.1673-2677.2021.04.003
    [16] MOONEY M. Explicit formulas for slip and fluidity[J]. Journal of Rheology, 1931, 2(2):210-222. doi: 10.1122/1.2116364
    [17] MOURNIAC P, AGASSANT J F, VERGNES B. Determination of the wall slip velocity in the flow of a SBR compound[J]. Rheologica Acta, 1992, 31(6):565-574. doi: 10.1007/BF00367011
    [18] WANG L J, LIU J Y, YAN Y, et al. Gas-liquid two-phase flow measurement using coriolis flowmeters incorporating artificial neural network, support vector machine, and genetic programming algorithms[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(5):852-868. doi: 10.1109/TIM.2016.2634630
    [19] JIN N D, YU C, HAN Y F, et al. The performance characteristics of electromagnetic flowmeter in vertical Low-Velocity Oil-Water Two-Phase flow[J]. IEEE Sensors Journal, 2021, 21(1):464-475. doi: 10.1109/JSEN.2020.3013327
    [20] 魏凯, 严梁柱, 方琼瑶, 等. 钻井液流变参数确定通用算法及程序设计[J]. 新疆石油天然气,2022,18(1):21-25. doi: 10.12388/j.issn.1673-2677.2022.01.003

    WEI Kai, YAN Liangzhu, FANG Qiongyao, et al. General algorithm and programming to determine the rheological parameters for drilling fluid[J]. Xinjiang Oil & Gas, 2022, 18(1):21-25. doi: 10.12388/j.issn.1673-2677.2022.01.003
    [21] 陈丽丹, 马永良, 张哲, 等. 基于广义交叉验证和吉洪诺夫正则化参数的智能电表计量异常识别方法[J]. 南方电网技术,2023,17(5):125-133.

    CHEN Lidan, MA Yongliang, ZHANG Zhe, et al. Anomaly detection method of smart meter based on tikhonov regularization and generalized Cross-Validation[J]. Southern Power System Technology, 2023, 17(5):125-133.
    [22] BHAR I, MANDAL N. Effect of position of electrodes in polarization type flowmeter: analysis and experimental evaluation[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6):3061-3069. doi: 10.1109/TIM.2019.2931527
    [23] 花靖, 蒋秀, 于超, 等. 基于改进型S VM算法的气液两相流持液率计算模型[J]. 西安石油大学学报(自然科学版),2022,37(6):103-110,118.

    HUA Jing, JIANG Xiu, YU Chao, et al. Liquid holdup calculation model of gas-liquid two-phase flow based on improved SVM algorithm[J]. Journal of Xi'an Shiyou University(Natural Science), 2022, 37(6):103-110,118.
    [24] 张金水, 田冷, 黄诗慧, 等. 基于极限梯度爬升算法与支持向量回归算法变权组合模型致密油的采收率预测[J]. 科学技术与工程,2022,22(12):4778-4787. doi: 10.3969/j.issn.1671-1815.2022.12.013

    ZHANG Jinshui, TIAN Leng, HUANG Shihui, et al. Tight oil recovery prediction based on extreme gradient boosting algorithm and support vector regression algorithm variable weight combination model[J]. Science Technology and Engineering, 2022, 22(12):4778-4787. doi: 10.3969/j.issn.1671-1815.2022.12.013
    [25] 林恒青. 一种改进的鲸鱼优化算法在工程上的应用[J]. 兰州文理学院学报(自然科学版),2024,38(3):44-47,53.

    LIN Hengqing. Application of an improved whale optimization algorithm in engineering[J]. Journal of LanZhou University of Arts And Science (Natural Sciences Edition), 2024, 38(3):44-47,53.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-10
  • 修回日期:  2025-03-21
  • 刊出日期:  2025-06-12

目录

    /

    返回文章
    返回