留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米改性材料在水基钻井液中的减阻性能

郭磊 李模刚 邓楚娈 贺垠博 耿铁

郭磊,李模刚,邓楚娈,等. 纳米改性材料在水基钻井液中的减阻性能[J]. 钻井液与完井液,2025,42(3):308-317 doi: 10.12358/j.issn.1001-5620.2025.03.005
引用本文: 郭磊,李模刚,邓楚娈,等. 纳米改性材料在水基钻井液中的减阻性能[J]. 钻井液与完井液,2025,42(3):308-317 doi: 10.12358/j.issn.1001-5620.2025.03.005
GUO Lei, LI Mugang, DENG Chuluan, et al.Drag reducing performance of a nanomodified material in water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(3):308-317 doi: 10.12358/j.issn.1001-5620.2025.03.005
Citation: GUO Lei, LI Mugang, DENG Chuluan, et al.Drag reducing performance of a nanomodified material in water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(3):308-317 doi: 10.12358/j.issn.1001-5620.2025.03.005

纳米改性材料在水基钻井液中的减阻性能

doi: 10.12358/j.issn.1001-5620.2025.03.005
基金项目: 国家自然科学基金重大项目“深海深井钻井液漏失机理与防治方法研究”(U23B2082)。
详细信息
    作者简介:

    郭磊,1983年生,硕士,高级工程师,中海油服油化研究院,从事多年钻完井液技术研发工作及科技项目管理工作。电话 18519854618;E-mail:guolei5@cosl.com.cn

  • 中图分类号: TE254.4

Drag Reducing Performance of a Nanomodified Material in Water Based Drilling Fluids

  • 摘要: 水基钻井液在小井眼环空流动时波动性大,与井壁、钻具界面阻力大,导致流动能量损耗和钻井液当量循环密度(ECD)大,易引发井漏、卡钻等事故。以纳米二氧化硅为原料,接枝改性合成水基钻井液减阻剂DRA-1,并开展减阻性能研究,发现DRA-1具有降低钻井液流动阻力与改善钻井液流动流型的作用。结果表明,在基浆中加入3%DRA-1后,流性指数为0.5064,增幅达366.7%,稠度系数为0.4847 Pa·sn,降幅达90.6%,极压润滑系数降低率达81.82%,经120℃热滚16 h后减阻效果进一步提高,证明DRA-1具有抗高温能力;以相同条件在自制钢片和聚四氟乙烯板上流动时,DRA-1对基浆流动性的改善效果显著优于现场同类材料,具有更好的流动性;基于A井生产资料,在水基钻井液中加入1%DRA-1后,压耗降低1.937 MPa,降低率达21.61%,在整个井深范围也表现出更低的ECD,宏观上反映出DRA-1对钻井效率和安全性的提升,这对钻井现场提高经济效益和避免作业事故具有重要意义。

     

  • 图  1  减阻剂DRA-1的红外波峰图

    图  3  DRA-1对固体表面润湿性的影响

    图  2  不同浓度DRA-1处理后的接触角示意图

    图  4  在基浆中分别加入相同加量的DRA-1、Lub-1、PAO热滚前后的塑性黏度对比图

    5  在基浆中分别加入相同加量DRA-1、Lub-1、PAO后剪切应力与剪切速率的测量曲线和拟合曲线(Ⅰ)

    5  在基浆中分别加入相同加量DRA-1、Lub-1、PAO后剪切应力与剪切速率的测量曲线和拟合曲线(Ⅱ)        

    图  6  在基浆中分别加入相同加量DRA-1、Lub-1、PAO后稠度系数与流性指数的测量曲线和拟合曲线

    图  7  流动装置示意图

    图  8  DRA-1吸收湍流漩涡能量后结构变化

    图  9  DRA-1在流体内部减阻机理示意图

    图  10  DRA-1处理滤饼前后SEM图

    图  11  在HEM抗高温水基钻井液中加入1%DRA-1的累积压耗与ECD随井深的变化曲线

    表  1  拟合R2结果表

    体系 热滚前 热滚后 体系 热滚前 热滚后
    4%基浆 0.4578 0.9887 +1%Lub-1 0.8362 0.9207
    +0.5%DRA-1 0.8482 0.9832 +3%Lub-1 0.8122 0.9684
    +1%DRA-1 0.8324 0.9754 +0.5%PAO 0.9072 0.9744
    +3%DRA-1 0.8657 0.9978 +1%PAO 0.9305 0.9544
    +0.5%Lub-1 0.7853 0.9254 +3%PAO 0.9271 0.9085
    下载: 导出CSV

    表  2  不同该体系的极压润滑系数计算结果对比

    体系 热滚前 120℃、16 h
    极压润
    滑系数
    极压润滑系数
    降低率/%
    极压润
    滑系数
    极压润滑系数
    降低率/%
    4%基浆 0.55 0.48
    +0.5%DRA-1 0.15 72.73 0.07 85.42
    +1%DRA-1 0.12 78.18 0.04 91.67
    +3%DRA-1 0.10 81.82 0.03 93.75
    +0.5%Lub-1 0.19 65.45 0.11 77.08
    +1%Lub-1 0.17 69.09 0.09 81.25
    +3%Lub-1 0.12 78.18 0.07 85.42
    +0.5%PAO 0.40 27.27 0.32 33.33
    +1%PAO 0.38 30.91 0.31 35.42
    +3%PAO 0.36 34.55 0.35 27.08
    下载: 导出CSV

    表  3  不同钻井液通过中压滤失形成泥饼的黏滞系数

    体系 热滚前 120℃、16 h
    黏滞
    系数
    黏滞系数
    降低率/%
    黏滞
    系数
    黏滞系数
    降低率/%
    4%基浆 0.0963 0.0875
    +0.5%DRA-1 0.0262 72.79 0.0175 80.00
    +1%DRA-1 0.0437 54.62 0.0175 80.00
    +3%DRA-1 0.0262 72.79 0.0262 70.06
    +0.5%Lub-1 0.0612 36.45 0.0349 60.11
    +1%Lub-1 0.0787 18.28 0.0262 70.06
    +3%Lub-1 0.0349 63.76 0.0262 70.06
    +0.5%PAO 0.0699 27.41 0.0349 60.11
    +1%PAO 0.0699 27.41 0.0262 70.06
    +3%PAO 0.0787 18.28 0.0787 10.06
    下载: 导出CSV

    表  4  在钢片和聚四氟乙烯板上相同消耗量下的流动对比

    流动界面 类型 消耗量/
    mL
    流动
    耗时/s
    流动距离/
    mm
    流动速度/
    mm·s−1
    钢片 基浆 3 9.24 34 3.68
    +1%DRA-1 3 20.68 100 4.84
    +1%Lub-1 3 10.87 30 2.76
    +1%PAO 3 9.55 45 4.71
    聚四氟
    乙烯板
    基浆 2 39.64 42 1.06
    +1%DRA-1 2 15.88 58 3.65
    +1%Lub-1 2 18.43 51 2.77
    +1%PAO 2 18.77 56 2.98
    下载: 导出CSV

    表  5  在钢片和聚四氟乙烯板上相同距离下的流动对比

    流动界面 类型 流动距离/
    mm
    消耗量/
    mL
    流动
    耗时/s
    流动速度/
    mm·s−1
    钢片 基浆 100 8 由于加量不一致,
    无法计算
    +1%DRA-1 100 3
    +1%Lub-1 100 9
    +1%PAO 100 5
    聚四氟
    乙烯板
    基浆 76 3 65.65 1.16
    +1%DRA-1 76 3 6.36 11.95
    +1%Lub-1 76 3 28.25 2.69
    +1%PAO 76 3 15.35 4.95
    下载: 导出CSV

    表  6  DRA-1在现场水基钻井液体系中的流变参数

    减阻剂 实验
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    未加入 热滚后 34.5 22 12.5
    +1%DRA-1 120℃、16 h
    26.0 18 8.0
    下载: 导出CSV
  • [1] JIANG G C, SUN J S, HE Y B, et al. Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs[J]. Engineering, 2022, 18:129-142. doi: 10.1016/j.eng.2021.11.014
    [2] ENDRIKAT S, NEWTON R, MODESTI D, et al. Reorganisation of turbulence by large and spanwise-varying riblets[J]. Journal of Fluid Mechanics, 2022, 952:A27. doi: 10.1017/jfm.2022.897
    [3] MARTIN S, BHUSHAN B. Fluid flow analysis of continuous and segmented riblet structures[J]. RSC Advances, 2016, 6(13):10962-10978. doi: 10.1039/C5RA20944G
    [4] 孙卫红, 刘波, 晏欣. 聚氨酯-丙烯酸酯柔性壁的减阻性能[J]. 高分子材料科学与工程,2017,33(9):59-64.

    SUN Weihong, LIU Bo, YAN Xin. Drag reduction properties of Polyurethane-Poly (acrylate) hybrid emulsions[J]. Polymer Materials Science & Engineering, 2017, 33(9):59-64.
    [5] LI L C, LIU B, HAO H L, et al. Investigation of the drag reduction performance of bionic flexible coating[J]. Aip Publishing, 2020, 32(8):084103.
    [6] CHEN D K, CUI X X, LIU X L, et al. Bionic gradient flexible fish skin acts as a passive dynamic micro-roughness to drag reduction[J]. Surface and Coatings Technology, 2023, 457:129337. doi: 10.1016/j.surfcoat.2023.129337
    [7] CHEN G Y, SUN T S, YANG S Q, et al. A study on the cavitating flow around an elliptical disk-shaped cavitator for non-body-of-revolution underwater vehicles[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1):2159882. doi: 10.1080/19942060.2022.2159882
    [8] JIA H X, XIE R S, ZHOU Y J. Experimental investigation of the supercavitation and hydrodynamic characteristics of High-Speed projectiles with hydrophobic and hydrophilic coatings[J]. Fluids, 2022, 7(12):363. doi: 10.3390/fluids7120363
    [9] SOKHAL K S, DASAROJU G, BULASARA V K. Formation, stability and comparison of water/oil emulsion using gum Arabic and guar gum and effect of aging of polymers on drag reduction percentage in water/oil flow[J]. Vacuum, 2019, 159:247-253. doi: 10.1016/j.vacuum.2018.10.044
    [10] KAUR H, SINGH G, JAAFARAZURAIEN-BT J. Study of drag reduction ability of naturally produced polymers from a local plant source[C]//Paper presented at the International Petroleum Technology Conference. Beijing, China, 2013: IPTC-17207-MS.
    [11] DOS SANTOS W R, SPALENZA CASER E, SOARES E J, et al. Drag reduction in turbulent flows by diutan gum: a very stable natural drag reducer[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 276:104223. doi: 10.1016/j.jnnfm.2019.104223
    [12] 杨贤程, 任兰庆, 刘飞, 等. 水相减阻用聚氧化乙烯的研究进展[J]. 节能,2020,39(4):158-162.

    YANG Xiancheng, REN Lanqing, LIU Fei, et al. Research progress in performance and application of PEO for water phase drag reduction[J]. Energy Conservation, 2020, 39(4):158-162.
    [13] 唐璇, 任蕊, 雷珂, 等. 原位聚合法制备聚α-烯烃减阻剂微囊的工艺研究[J]. 应用化工,2017,46(12):2370-2373.

    TANG Xuan, REN Rui, LEI Ke, et al. Study on preparation of coated poly alpha olefin drag reduction agent microcapsules by insitu polymerization[J]. Applied Chemical Industry, 2017, 46(12):2370-2373.
    [14] SREEDHAR I, REDDY N S, RAHMAN S A, et al. Drag reduction studies in water using polymers and their combinations[J]. Materials Today Proceedings, 2020, 24, Part 2: 601-610.
    [15] RODRIGUES R K, SILVA L A S, VARGAS S G, et al. Drag reduction by wormlike micelles of a biodegradable and Non‐biodegradable surfactants[J]. Journal of Surfactants and Detergents, 2019, 23(1):21-40.
    [16] 王青会, 刘冬洁, 魏进家. 阳离子Gemini表面活性剂/水杨酸钠溶液的黏度特性[J]. 华东理工大学学报(自然科学版),2018,44(2):162-167.

    WANG Qinghui, LIU Dongjie, WEI Jinjia. Viscosity of cationic Gemini surfactant/NaSal solutions[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2018, 44(2):162-167.
    [17] 李恩田, 吉庆丰, 王丰海, 等. 两性表面活性剂的湍流减阻性能与流场分析[J]. 中国科技论文,2020,15(4):444-448.

    LI Entian, JI Qingfeng, WANG Fenghai, et al. Turbulence drag reduction performance and flow field analysis of amphoteric surfactants[J]. China Sciencepaper, 2020, 15(4):444-448.
    [18] NI X X, JIANG G C, FAN L, et al. Synthesis of an amphiphobic nanofluid with a novel structure and its wettability alteration on low-permeability sandstone reservoirs[J]. Energy & Fuels, 2018, 32(4):4747-4753.
    [19] 陈楚君. 改性纳米聚硅涂层的制备及其减阻性能研究[D]. 南京: 东南大学, 2022.

    CHEN Chujun. Preparation of modified nano-polysilicon coating and its drag-reduction performance[D]. Nanjing: Southeast University, 2022.
    [20] LI X L, WANG K, LU Y J, et al. Compatibility and efficiency of hydrophilic/hydrophobic nano silica as rheological modifiers and fluid loss reducers in water-based drilling fluids[J]. Geoenergy Science and Engineering, 2024, 234:212628. doi: 10.1016/j.geoen.2023.212628
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  16
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-17
  • 修回日期:  2025-01-29
  • 刊出日期:  2025-06-12

目录

    /

    返回文章
    返回