Simulation of Action between Epoxy Resin and Solidifier/Formation Minerals Based on Molecular Dynamics
-
摘要: 研究环氧树脂材料的固化过程以及其与地层矿物之间的相互作用,对于其在石油领域的应用具有重要的理论意义。然而,以往的研究主要集中于环氧树脂材料自身的性质,忽视了其与地层的相互作用。为了深入探讨环氧树脂材料的固化过程及其与地层矿物之间的相互作用,该研究基于分子模拟方法,以E51环氧树脂分子和不同种固化剂为研究对象,计算了其分子间的静电势、作用能以及固化产物与地层矿物之间的相互作用能。研究结果表明,环氧树脂分子中的环氧基团具有明显的负静电势,数值为−0.060 Hartree/e,而固化剂分子中的活泼氢原子则具有明显的正电势,数值在0.053~0.126 Hartree/e之间。此外,环氧树脂与不同固化剂分子间存在相互吸引作用,其相互作用能范围为−0.446~−29.306 kcal/mol;交联后,分子间的相互作用能下降至−80.987~−110.844 kcal/mol之间。最后,环氧树脂交联产物与地层矿物之间也存在显著的相互吸引作用,其中单个树脂分子与方解石矿物的相互作用能在−49.795~−173.187 kcal/mol之间,与白云石矿物的相互作用能在−44.604~−147.307 kcal/mol之间。该研究的结果为环氧树脂在石油天然气工业中的应用提供了理论基础,所采用的研究方法也可用于优化环氧树脂类添加剂的设计。Abstract: Studying on the hardening process of epoxy resin and the interaction between epoxy and formation minerals has important theoretical significance for their application in petroleum industry. Studies on epoxy in the past mainly focused on the properties of epoxy resin itself, with its interaction with formations being ignored. To extensively investigate the hardening process of epoxy and the interaction between epoxy and formation minerals, molecular simulation method was used to study the molecules of E51 epoxy resin and several hardening agents. The electrostatic potential and interaction energy between the molecules of epoxy and the molecules of the hardening agents, as well as the interaction energy between the products of the hardening process and the formation minerals, were calculated. It was found that the epoxy groups in the epoxy resin molecules have a significant negative potential, which is −0.060 Hartree/e, while the active hydrogen atoms in the molecules of the hardening agents have significant positive potential, ranging from 0.053 Hartree/e to 0.126 Hartree/e. Moreover, mutual attraction exists between the molecules of the epoxy resin and the molecules of the hardening agents, the energy of the attraction ranges from −0.446 kcal/mol to −29.306 kcal/mol. After crosslinking, the interaction energy between the molecules was reduced to −80.987 kcal/mol to −110.844 kcal/mol. Finally, significant mutual attraction also exists between the crosslinking product of the epoxy resin and formation minerals; the interaction energy between a single epoxy molecule and the calcite mineral in the formation ranges from −49.795 kcal/mol to −173.187 kcal/mol, while the interaction energy between a single epoxy molecule and the dolomite mineral in the formation ranges from −44.604 kcal/mol to −147.307 kcal/mol. These research achievements have provided a theoretical base for the application of epoxy resin in oil and natural gas industry, and the research method adopted can be used in optimizing the design of epoxy resin additives.
-
Key words:
- Molecular simulation /
- Epoxy resin /
- Formation mineral /
- Electrostatic potential /
- Interaction energy
-
表 1 环氧树脂及固化剂分子静电势计算
名称 静电势/(Hartree·e−1) 最大 最小 环氧树脂E51 0.039 035 −0.060 107 双氰胺(DICY) 0.126 240 −0.087 255 4,4'-二氨基二苯基甲烷(DDM) 0.071 624 −0.057 469 3,3'-二乙基-4,4'-
二氨基二苯甲烷(DEDDM)0.068 772 −0.059 088 3,3'-二氨基二苯砜 (3,3DDS) 0.083 658 −0.068 687 4,4'-二氨基二苯砜 (4,4DDS) 0.089 912 −0.074 753 3-二乙胺基丙胺(DEAPA) 0.053 483 −0.076 348 二亚乙基三胺 0.055 256 −0.079 466 表 2 交联前环氧树脂与各固化剂间分子作用能
固化剂 EAB/Hartree EA/Hartree EB/Hartree 作用能/(kcal·mol−1) 单个树脂分子
作用能/(kcal·mol−1)双氰胺 −2526.14 −2228.80 −297.34 −0.89 −0.45 DDM −2841.49 −2228.80 −612.69 −2.78 −1.39 DEDDM −2998.56 −2228.80 −769.75 −2.81 −1.41 3,3DDS −3350.68 −2228.80 −1121.79 −57.14 −28.57 4,4DDS −3350.69 −2228.80 −1121.80 −58.61 −29.31 DEAPA −2615.42 −2228.80 −386.62 −3.51 −1.75 二亚乙基三胺 −2552.94 −2228.80 −324.13 −5.88 −2.94 表 3 交联后环氧树脂与各固化剂间分子作用能
固化剂 EAB/Hartree EA/Hartree EB/Hartree 作用能/(kcal·mol−1) 单个树脂分子作用能/(kcal·mol−1) 双氰胺 −2526.24 −2229.90 −296.00 −211.16 −105.58 DDM −2841.57 −2229.94 −611.37 −161.97 −80.99 DEDDM −2998.63 −2229.96 −768.43 −155.35 −77.67 3,3DDS −3350.84 −2229.96 −1120.52 −219.17 −109.58 4,4DDS −3350.75 −2229.92 −1120.48 −221.69 −110.84 DEAPA −2615.49 −2229.93 −385.28 −176.59 −88.30 二亚乙基三胺 −2553.05 −2229.97 −322.79 −178.51 −89.26 表 4 交联后环氧树脂-方解石分子间作用能
固化剂 EAB/Hartree EA/Hartree EB/Hartree 作用能/(kcal·mol−1) 单个树脂分子作用能/(kcal·mol−1) 双氰胺 −367 961.44 −364 495.69 2706.21 −6171.97 −61.72 DDM −369 891.37 −365 585.24 673.38 −4979.51 −49.80 DEDDM −367 049.70 −364 839.98 3005.20 −5214.92 −52.15 3,3DDS −368 504.58 −364 888.47 2574.26 −6190.37 −61.90 4,4DDS −368 221.60 −363 507.82 4180.85 −8894.63 −88.95 DEAPA −336 115.01 −359 373.68 40 577.39 −17318.71 −173.19 二亚乙基三胺 −365 579.78 −365 212.85 5243.81 −5610.74 −56.11 表 5 交联后环氧树脂-白云石分子间作用能
固化剂 EAB/Hartree EA/Hartree EB/Hartree 作用能/(kcal·mol−1) 单个树脂分子作用能/(kcal·mol−1) 双氰胺 −392 645.53 −389 742.54 2531.26 −5434.26 −54.34 DDM −394 792.62 −390 534.88 432.30 −4690.04 −46.90 DEDDM −391 613.49 −389 788.12 2864.97 −4690.34 −46.90 3,3DDS −393 370.18 −390 746.30 2285.05 −4908.93 −49.09 4,4DDS −391 789.88 −388 670.10 4051.63 −7171.40 −71.71 DEAPA −359 170.31 −383 661.55 39222.01 −14730.77 −147.31 二亚乙基三胺 −389 627.68 −390 196.08 5028.79 −4460.39 −44.60 -
[1] 曾光, 高德伟, 曾家新, 等. 抗返吐堵漏剂的研制及现场应用[J]. 油田化学,2023,40(1):26-31,38.ZENG Guang, GAO Dewei, ZENG Jiaxin, et al. Development and field application of anti-returning and plugging agent[J]. Oilfield Chemistry, 2023, 40(1):26-31,38. [2] 陈大钧, 郭东旭, 邓英江, 等. 液态双酚F型环氧树脂在堵水中的作用探讨[J]. 精细石油化工进展,2011,12(1):5-8. doi: 10.3969/j.issn.1009-8348.2011.01.002CHEN Dajun, GUO Dongxu, DENG Yingjiang, et al. Function of bisphenol F-type epoxy resin solution in water plugging[J]. Advances in Fine Petrochemicals, 2011, 12(1):5-8. doi: 10.3969/j.issn.1009-8348.2011.01.002 [3] 邓永砚. 多功能型环氧树脂堵水材料的制备及性能研究[D]. 长春: 吉林大学, 2015.DENG Yongyan. Preparation and property of multifunctional epoxy resin plugging materials[D]. Changchun: Jilin University, 2015. [4] 顾轶卓, 张佐光, 李敏, 等. 新型环氧-酚醛树脂体系的固砂原理与技术[J]. 北京航空航天大学学报,2005,31(12):1303-1307. doi: 10.3969/j.issn.1001-5965.2005.12.008GU Yizhuo, ZHANG Zuoguang, LI Min, et al. Principle and technique of sand consolidation with novel epoxy-phenolic resins system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(12):1303-1307. doi: 10.3969/j.issn.1001-5965.2005.12.008 [5] 唐凡, 朱永刚, 张涛, 等. 气井套损修复用纳米SiO2/环氧树脂复合体系的研制与应用[J]. 油田化学,2022,39(3):407-412.TANG Fan, ZHU Yonggang, ZHANG Tao, et al. Preparation and application of Nano-SiO2/epoxy composite system for repairing gas well casing damage[J]. Oilfield Chemistry, 2022, 39(3):407-412. [6] 王振镭, 李强利, 严初三, 等. 双酚A对环氧树脂固化反应的影响研究[J]. 热固性树脂,2024,39(1):20-24.WANG Zhenlei, LI Qiangli, YAN Chusan, et al. Effect of bisphenol-A on the curing reaction of epoxy resin[J]. Thermosetting Resin, 2024, 39(1):20-24. [7] 张藕生, 唐建华, 罗子堃. 环氧树脂/DDS耐高温树脂体系的固化动力学研究及性能调控[J]. 热固性树脂,2024,39(4):41-46.ZHANG Ousheng, TANG Jianhua, LUO Zikun. Curing kinetics and properties tuning of epoxy resin/DDS high heat-resistant resin system[J]. Thermosetting Resin, 2024, 39(4):41-46. [8] XU Y H, LI J Y, LIANG H B, et al. The effects of amino-modified graphene oxide on the water molecules diffusion and seawater barrier properties of DGEBA/3, 3′-DDS epoxy resin: a molecular dynamics simulation[J]. Chemical Papers, 2024, 78(3):1469-1479. doi: 10.1007/s11696-023-03174-8 [9] NAEBE M, WANG J, AMINI A, et al. Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites[J]. Scientific Reports, 2014, 4:4375. doi: 10.1038/srep04375 [10] QI Y, WENG Z H, KOU Y, et al. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers[J]. Chemical Engineering Journal, 2021, 406:126881. doi: 10.1016/j.cej.2020.126881 [11] QI Y, WENG Z H, ZHANG K W, et al. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy[J]. Chemical Engineering Journal, 2020, 387:124115. doi: 10.1016/j.cej.2020.124115 [12] 张永熠, 张学军, 曹洪硕, 等. 基于分子动力学模拟预测环氧树脂形状记忆性能研究[J]. 智能安全,2024,3(2):20-28. doi: 10.12407/j.issn.2097-2075.2024.02.020ZHANG Yongyi, ZHANG Xuejun, CAO Hongshuo, et al. Prediction of shape memory properties of epoxy resin by molecular dynamics simulation[J]. Artificial Intelligence Security, 2024, 3(2):20-28. doi: 10.12407/j.issn.2097-2075.2024.02.020 [13] 王彩华, 尚泽阳, 胡庆祥, 等. 温度对环氧树脂基复合泡沫材料力学性能的影响[J]. 塑料科技,2024,52(6):84-88.WANG Caihua, SHANG Zeyang, HU Qingxiang, et al. Effect of temperature on mechanical properties of epoxy resin matrix composite foams[J]. Plastics Science and Technology, 2024, 52(6):84-88. [14] FAN H B, YUEN M M F. Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation[J]. Polymer, 2007, 48(7):2174-2178. doi: 10.1016/j.polymer.2007.02.007 [15] SHENG C, LIU S, LIANG K, et al. Thermo-Mechanical analysis of epoxy resins under the influence of moisture-heat coupling by molecular dynamics simulation[J]. Advanced Theory and Simulations, 2023, 7(3): DOI: 10.1002/adts.202300645. -