留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性六聚阳离子表面活性剂胶束压裂液体系流变性

宾钰洁 韩晓阳 田珍瑞 武志颖 张思琪 方波 卢拥军

宾钰洁,韩晓阳,田珍瑞,等. 黏弹性六聚阳离子表面活性剂胶束压裂液体系流变性[J]. 钻井液与完井液,2025,42(2):262-274 doi: 10.12358/j.issn.1001-5620.2025.02.015
引用本文: 宾钰洁,韩晓阳,田珍瑞,等. 黏弹性六聚阳离子表面活性剂胶束压裂液体系流变性[J]. 钻井液与完井液,2025,42(2):262-274 doi: 10.12358/j.issn.1001-5620.2025.02.015
BIN Yujie, HAN Xiaoyang, TIAN Zhenrui, et al.Rheology of a viscoelastic hexameric cationic surfactant micellar fracturing fluid[J]. Drilling Fluid & Completion Fluid,2025, 42(2):262-274 doi: 10.12358/j.issn.1001-5620.2025.02.015
Citation: BIN Yujie, HAN Xiaoyang, TIAN Zhenrui, et al.Rheology of a viscoelastic hexameric cationic surfactant micellar fracturing fluid[J]. Drilling Fluid & Completion Fluid,2025, 42(2):262-274 doi: 10.12358/j.issn.1001-5620.2025.02.015

黏弹性六聚阳离子表面活性剂胶束压裂液体系流变性

doi: 10.12358/j.issn.1001-5620.2025.02.015
基金项目: 国家科技重大专项“储层改造关键流体研发”(2017ZX05023003)、中石油科技重大专项“超高温清洁压裂液与变黏功能滑溜水研究”(2020B-4120)。
详细信息
    作者简介:

    宾钰洁,1999年生,华东理工大学材料与化工专业在读硕士,研究方向为低聚表面活性剂流变学为压裂液流变学。电话 18621058917; E-mail: miaozimia@163.com。

    通讯作者:

    方波,教授,E-mail:fangbo@ecust.edu.cn

  • 中图分类号: TE357.12

Rheology of a Viscoelastic Hexameric Cationic Surfactant Micellar Fracturing Fluid

  • 摘要: 为开发黏弹性表面活性剂(VES)压裂液新稠化剂和新体系,以乙二胺、环氧氯丙烷、芥酸酰胺二甲基丙基叔胺(PKO-E)、氯乙酸钠为原料,分别研制了四聚阳离子表面活性剂(TET)、六聚阳离子表面活性剂(HET)和四聚两性离子表面活性剂(TZI),并将其与反离子盐溴化钾(KBr)、水杨酸钠(NaSal)形成黏弹性胶束,获得4种VES压裂液新体系。考察反离子盐种类和浓度和表面活性剂浓度对胶束体系流变性影响,获得黏弹性HET/KBr胶束体系的稳态黏度、流动曲线、黏弹性、触变性、热触变性及模量-温度曲线,以及HET/KBr胶束体系最优组成,建立四参数流变动力学方程描述黏度随剪切时间的变化曲线,建立四参数黏温方程描述HET/KBr体系温度触变性曲线,明确了HET/KBr、HET/NaSal、TET/KBr、TZI/KBr胶束体系流变性差异。初步考察了NaOH对HET/HSal延缓形成胶束的影响。

     

  • 图  1  六聚阳离子和四聚两性表面活性剂合成路线

    图  2  HET和TZI红外光谱

    图  3  T核磁共振氢谱

    图  4  HET/KBr体系剪切黏度随KBr浓度变化

    图  5  不同KBr浓度和HET浓度下HET/KBr体系流动曲线

    图  6  HET/KBr体系的模量-应变曲线

    图  7  T/KBr体系的模量-频率曲线(应变为1%)

    图  8  HET/KBr体系的触变性

    图  9  HET/KBr胶束体系的热触变性

    图  10  ET/KBr体系的模量-温度曲线

    图  11  KBr、NaSal对HET黏弹性胶束流动曲线的影响

    图  12  HET(5%)/HSal(0.4%)/NaOH延缓胶束体系黏度随时间变化曲线

    图  13  KBr浓度对TZI/KBr黏弹性胶束体系流动曲线影响

    图  14  HET/KBr、TET/KBr、TZI/KBr胶束体系流动曲线(左)和触变性(右)对比

    表  1  HET/KBr胶束溶液四参数流变动力学方程模型参数

    HET/KBr
    (%/%)
    模型参数 R
    η0/mPa·s ηe/mPa·s k/s−1 m
    5/0 47.76 45.32 0.100 1.39 0.982
    5/1.0 210.51 45.40 0.014 2.67 0.979
    5/1.2 479.66 308.78 0.080 2.13 0.980
    5/1.4 977.54 267.80 0.420 1.07 0.982
    5/1.6 2858.11 269.34 2.010 0.95 0.981
    5/1.8 334.27 235.46 0.064 2.80 0.964
    下载: 导出CSV

    表  2  HET/KBr胶束体系的Carreau-Yasuda模型拟合结果

    HET/KBr
    (%/%)
    模型参数
    $ {\eta }_{0} $/mPa·s $ {\eta }_{\infty }/ $mPa·s $ \lambda $/s a $ n $ R
    5/0 611.10 1.25 0.77 1.52 0.35 0.999
    5/1.0 1943.05 1.47 0.07 0.35 1.67 0.985
    5/1.2 13465.30 1.15 3.14 1.28 0.20 0.986
    5/1.4 104342.88 1.79 7.14 0.68 0.20 0.970
    5/1.6 86950.63 1.63 4.85 2.89 0.20 0.982
    5/1.8 51258.35 1.62 7.09 2.85 0.15 0.999
    4/0.96 78952.53 1.10 6.78 1.30 0.02 0.976
    3/0.72 60958.41 1.44 8.29 2.61 0.04 0.999
    2/0.48 43292.50 1.42 16.67 2.66 0.05 0.999
    1/0.24 6430.90 1.21 8.70 2.45 0.05 0.999
    下载: 导出CSV

    表  3  HET/KBr胶束溶液四参数黏温模型参数

    HET/KBr
    (%/%)
    升温曲线降温曲线
    ηaηEakamaRηdηEdkdmdR
    5/1.2396.27101.740.01912.740.996363.60101.880.0306.310.970
    5/1.4234.5133.430.0185.770.990201.7739.870.0198.640.995
    5/1.6273.9553.030.01819.930.998276.2439.880.029.260.997
    5/1.8322.581.060.0256.490.992628.430.980.0384.30.992
    下载: 导出CSV

    表  4  HET/HSal/NaOH体系延缓胶束形成四参数流变动力学方程模型参数

    HET/HSal/NaOH
    (%/%/%)
    模型参数 R
    η0/
    mPa·s
    ηmax/
    mPa·s
    k/
    s−1
    m
    5/0.4/0.2 44.95 146.99 0.0018 5.440 0.959
    5/0.4/0.4 71.14 971.75 0.0011 3.836 0.997
    下载: 导出CSV
  • [1] 沈之芹, 王辉辉, 何秀娟, 等. 盐增黏的两性-阴离子表面活性剂体系研究[J]. 石油化工,2023,52(10):1405-1410. doi: 10.3969/j.issn.1000-8144.2023.10.011

    SHEN Zhiqin, WANG Huihui, HE Xiujuan, et al. Study on zwitterionic-anionic surfactant system with salt thickening[J]. Petrochemical Technology, 2023, 52(10):1405-1410. doi: 10.3969/j.issn.1000-8144.2023.10.011
    [2] MAO J C, YANG X J, CHEN Y N, et al. Viscosity reduction mechanism in high temperature of a Gemini viscoelastic surfactant (VES) fracturing fluid and effect of counter-ion salt (KCl) on its heat resistance[J]. Journal of Petroleum Science and Engineering, 2018, 164:189-195.
    [3] DAS N C, CAO H, KAISER H, et al. Shape and size of highly concentrated micelles in CTAB/NaSal solutions by Small Angle Neutron Scattering (SANS)[J]. Langmuir, 2012, 28(33):11962-11968. doi: 10.1021/la2022598
    [4] ZHAO Y Q, HE J L, XU W T, et al. Viscoelastic micellar system of mixed surfactin and octadecyl trimethyl ammonium chloride[J]. Journal of Surfactants and Detergents, 2022, 25(5):575-584. doi: 10.1002/jsde.12594
    [5] SAMUEL M, CARD R J, NELSON E B, et al. Polymer-Free fluid for hydraulic fracturing[C]//SPE annual technical conference and exhibition, 1997: SPE-38622-MS.
    [6] 侯向前, 卢拥军, 方波, 等. 表面活性剂在非常规油气增产中的应用研究进展[J]. 石油化工,2023,52(5):734-741. doi: 10.3969/j.issn.1000-8144.2023.05.020

    HOU Xiangqian, LU Yongjun, FANG Bo, et al. Research progress on application of surfactants in unconventional oil and gas stimulation[J]. Petrochemical Technology, 2023, 52(5):734-741. doi: 10.3969/j.issn.1000-8144.2023.05.020
    [7] XU T, MAO J C, ZHANG Y, et al. Application of Gemini viscoelastic surfactant with high salt in brine-based fracturing fluid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611:125838. doi: 10.1016/j.colsurfa.2020.125838
    [8] ZANA R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review[J]. Advances in Colloid and Interface Science, 2002, 97(1/3):205-253.
    [9] CHEN J, TAN X Y, FANG B, et al. Rheological behavior of a novel fracturing fluid formed from amine oxide surfactants[J]. Journal of Surfactants and Detergents, 2022, 25(5):601-612. doi: 10.1002/jsde.12606
    [10] ZHAO J, FANG B, GUO Y G. Synergistic rheological behavior of mixed micellar solutions of surfactin and cetyl trimethyl ammonium bromide[J]. Journal of Surfactants and Detergents, 2020, 23(3):573-579. doi: 10.1002/jsde.12395
    [11] XU W T, HAN X Y, FANG B, et al. Rheology on novel viscoelastic trimeric octadecyl zwitterionic surfactant micelle solutions[J]. Journal of Surfactants and Detergents, 2023, 26(5):667-681.
    [12] TAN X Y, CHEN J, FANG B, et al. Rheology on high temperature resistant novel trimeric cationic viscoelastic surfactant with KCl[J]. Journal of Dispersion Science and Technology, 2023, 44(12):2231-2238. doi: 10.1080/01932691.2022.2065296
    [13] WU H N, FANG B, YU L Y, et al. Rheology and delayed micellar formation process of novel tetrameric cationic surfactant fracturing fluid[J]. Journal of Surfactants and Detergents, 2023, 26(6):827-842.
    [14] 李杰. 树林状低聚表面活性剂的合成及性能研究[D]. 大庆: 东北石油大学, 2011.

    LI Jie. Synthesis and performances of dendrimer oligomeric surfacants[D]. Daqing: Northeast Petroleum University, 2011.
    [15] 骆慧. 耐高温黏弹性表面活性剂胶束压裂液流变性研究[D]. 上海: 华东理工大学, 2021.

    LUO Hui. Study on rheology of surfactant micelle systems[D]. Shanghai: East China University of Science and Technology, 2021.
    [16] KHATORY A, LEQUEUX F, KERN F, et al. Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content[J]. Langmuir, 1993, 9(6):1456-1464. doi: 10.1021/la00030a005
    [17] FU H R, DUAN W M, ZHANG T L, et al. Preparation and mechanism of pH and temperature stimulus-responsive wormlike micelles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624:126788. doi: 10.1016/j.colsurfa.2021.126788
    [18] FAN H M, ZHENG T, CHEN H L, et al. Viscoelastic surfactants with high salt tolerance, fast-dissolving property, and ultralow interfacial tension for chemical flooding in offshore oilfields[J]. Journal of Surfactants and Detergents, 2018, 21(4):475-488. doi: 10.1002/jsde.12042
    [19] YASUDA K, ARMSTRONG R C, COHEN R E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes[J]. Rheologica acta, 1981, 20(2):163-178. doi: 10.1007/BF01513059
    [20] SHRESTHA R G, SHRESTHA L K, ARAMAKI K. Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant systems[J]. Journal of Colloid and Interface Science, 2007, 311(1):276-284. doi: 10.1016/j.jcis.2007.02.050
    [21] BARNES H A. Thixotropy-a review[J]. Journal of Non-Newtonian Fluid Mechanics, 1997, 70(1/2):1-33.
    [22] 高航, 方波, 许可, 等. HPAM溶液流变性与减阻关系[J]. 钻井液与完井液,2022,39(1):100-106. doi: 10.12358/j.issn.1001-5620.2022.01.017

    GAO Hang, FANG Bo, XU Ke, et al. Study on relationship between rheology of HPAM solution and friction reduction[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):100-106. doi: 10.12358/j.issn.1001-5620.2022.01.017
    [23] XIONG J P, FANG B, LU Y J, et al. Rheology and high-temperature stability of novel viscoelastic Gemini micelle solutions[J]. Journal of Dispersion Science and Technology, 2018, 39(9):1324-1327.
    [24] HUANG Z G, MAO J C, CUN M, et al. Polyhydroxy cationic viscoelastic surfactant for clean fracturing fluids: Study on the salt tolerance and the effect of salt on the high temperature stability of wormlike micelles[J]. Journal of Molecular Liquids, 2022, 366:120354. doi: 10.1016/j.molliq.2022.120354
    [25] HALDAR J, ASWAL V K, GOYAL P S, et al. Role of incorporation of multiple headgroups in cationic surfactants in determining micellar properties. Small-angle-neutron-scattering and fluorescence studies[J]. The Journal of Physical Chemistry B, 2001, 105(51):12803-12808.
    [26] XU D Q, NI X Y, ZHANG C Y, et al. Synthesis and properties of biodegradable cationic gemini surfactants with diester and flexible spacers[J]. Journal of Molecular Liquids, 2017, 240:542-548. doi: 10.1016/j.molliq.2017.05.092
    [27] ZHANG W L, MAO J C, YANG X J, et al. Study of a novel Gemini viscoelastic surfactant with high performance in clean fracturing fluid application[J]. Polymers, 2018, 10(11):1215. doi: 10.3390/polym10111215
    [28] LI R, ZHANG Q, PEI X M, et al. The rheological behavior of organic salt/Gemini surfactant mixed systems: effect of isomerization of additives[J]. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2020, 585:124114. doi: 10.1016/j.colsurfa.2019.124114
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  8
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 修回日期:  2024-09-10
  • 录用日期:  2024-09-10
  • 刊出日期:  2025-04-17

目录

    /

    返回文章
    返回