Rheology of a Viscoelastic Hexameric Cationic Surfactant Micellar Fracturing Fluid
-
摘要: 为开发黏弹性表面活性剂(VES)压裂液新稠化剂和新体系,以乙二胺、环氧氯丙烷、芥酸酰胺二甲基丙基叔胺(PKO-E)、氯乙酸钠为原料,分别研制了四聚阳离子表面活性剂(TET)、六聚阳离子表面活性剂(HET)和四聚两性离子表面活性剂(TZI),并将其与反离子盐溴化钾(KBr)、水杨酸钠(NaSal)形成黏弹性胶束,获得4种VES压裂液新体系。考察反离子盐种类和浓度和表面活性剂浓度对胶束体系流变性影响,获得黏弹性HET/KBr胶束体系的稳态黏度、流动曲线、黏弹性、触变性、热触变性及模量-温度曲线,以及HET/KBr胶束体系最优组成,建立四参数流变动力学方程描述黏度随剪切时间的变化曲线,建立四参数黏温方程描述HET/KBr体系温度触变性曲线,明确了HET/KBr、HET/NaSal、TET/KBr、TZI/KBr胶束体系流变性差异。初步考察了NaOH对HET/HSal延缓形成胶束的影响。Abstract: In developing new viscoelastic (VES) thickening agents and new fracturing fluids, several raw materials, including ethylenediamine, epichlorohydrin, erucamide propyl dimethyl tertiary amine (PKO-E) and sodium chloroacetate were used to first produce tetrameric cationic surfactant (TET), hexameric cationic surfactant (HET) and tetrameric zwitterionic surfactant (TZI), and the surfactants were then reacted with counterion salts potassium bromide (KBr) and sodium salicylate (NaSal) to produce a viscoelastic micelle, from which four VES fracturing fluids were formulated. The effects of the types and concentrations of the counterion salts and the concentrations of the surfactants on the rheology of the micellar systems were investigated, and the steady-state viscosity, flow curve, viscoelasticity, thixotropy, thermal-thixotropy and the modulus-temperature curve of the viscoelastic HET/KBr micellar system, as well as the optimum composition of the HET/KBr micellar system were obtained. A four-parameter rheological dynamics equation and a four-parameter viscosity-temperature equation were developed to describe the change of viscosity with shearing time and the temperature thixotropy of the HET/KBr system, respectively. The rheological differences among the micellar systems HET/KBr, HET/NaSal, TET/KBr and TZI/KBr were also understood. The effects of NaOH on delaying the generation of micelles in the HET/HSal system were preliminarily investigated.
-
Key words:
- Oligomeric surfactant /
- Viscoelastic surfactant /
- Fracturing fluid /
- Rheology /
- Rheological dynamics
-
表 1 HET/KBr胶束溶液四参数流变动力学方程模型参数
HET/KBr
(%/%)模型参数 R η0/mPa·s ηe/mPa·s k/s−1 m 5/0 47.76 45.32 0.100 1.39 0.982 5/1.0 210.51 45.40 0.014 2.67 0.979 5/1.2 479.66 308.78 0.080 2.13 0.980 5/1.4 977.54 267.80 0.420 1.07 0.982 5/1.6 2858.11 269.34 2.010 0.95 0.981 5/1.8 334.27 235.46 0.064 2.80 0.964 表 2 HET/KBr胶束体系的Carreau-Yasuda模型拟合结果
HET/KBr
(%/%)模型参数 $ {\eta }_{0} $/mPa·s $ {\eta }_{\infty }/ $mPa·s $ \lambda $/s a $ n $ R 5/0 611.10 1.25 0.77 1.52 0.35 0.999 5/1.0 1943.05 1.47 0.07 0.35 1.67 0.985 5/1.2 13465.30 1.15 3.14 1.28 0.20 0.986 5/1.4 104342.88 1.79 7.14 0.68 0.20 0.970 5/1.6 86950.63 1.63 4.85 2.89 0.20 0.982 5/1.8 51258.35 1.62 7.09 2.85 0.15 0.999 4/0.96 78952.53 1.10 6.78 1.30 0.02 0.976 3/0.72 60958.41 1.44 8.29 2.61 0.04 0.999 2/0.48 43292.50 1.42 16.67 2.66 0.05 0.999 1/0.24 6430.90 1.21 8.70 2.45 0.05 0.999 表 3 HET/KBr胶束溶液四参数黏温模型参数
HET/KBr
(%/%)升温曲线 降温曲线 ηa ηEa ka ma R ηd ηEd kd md R 5/1.2 396.27 101.74 0.019 12.74 0.996 363.60 101.88 0.030 6.31 0.970 5/1.4 234.51 33.43 0.018 5.77 0.990 201.77 39.87 0.019 8.64 0.995 5/1.6 273.95 53.03 0.018 19.93 0.998 276.24 39.88 0.02 9.26 0.997 5/1.8 322.58 1.06 0.025 6.49 0.992 628.43 0.98 0.038 4.3 0.992 表 4 HET/HSal/NaOH体系延缓胶束形成四参数流变动力学方程模型参数
HET/HSal/NaOH
(%/%/%)模型参数 R η0/
mPa·sηmax/
mPa·sk/
s−1m 5/0.4/0.2 44.95 146.99 0.0018 5.440 0.959 5/0.4/0.4 71.14 971.75 0.0011 3.836 0.997 -
[1] 沈之芹, 王辉辉, 何秀娟, 等. 盐增黏的两性-阴离子表面活性剂体系研究[J]. 石油化工,2023,52(10):1405-1410. doi: 10.3969/j.issn.1000-8144.2023.10.011SHEN Zhiqin, WANG Huihui, HE Xiujuan, et al. Study on zwitterionic-anionic surfactant system with salt thickening[J]. Petrochemical Technology, 2023, 52(10):1405-1410. doi: 10.3969/j.issn.1000-8144.2023.10.011 [2] MAO J C, YANG X J, CHEN Y N, et al. Viscosity reduction mechanism in high temperature of a Gemini viscoelastic surfactant (VES) fracturing fluid and effect of counter-ion salt (KCl) on its heat resistance[J]. Journal of Petroleum Science and Engineering, 2018, 164:189-195. [3] DAS N C, CAO H, KAISER H, et al. Shape and size of highly concentrated micelles in CTAB/NaSal solutions by Small Angle Neutron Scattering (SANS)[J]. Langmuir, 2012, 28(33):11962-11968. doi: 10.1021/la2022598 [4] ZHAO Y Q, HE J L, XU W T, et al. Viscoelastic micellar system of mixed surfactin and octadecyl trimethyl ammonium chloride[J]. Journal of Surfactants and Detergents, 2022, 25(5):575-584. doi: 10.1002/jsde.12594 [5] SAMUEL M, CARD R J, NELSON E B, et al. Polymer-Free fluid for hydraulic fracturing[C]//SPE annual technical conference and exhibition, 1997: SPE-38622-MS. [6] 侯向前, 卢拥军, 方波, 等. 表面活性剂在非常规油气增产中的应用研究进展[J]. 石油化工,2023,52(5):734-741. doi: 10.3969/j.issn.1000-8144.2023.05.020HOU Xiangqian, LU Yongjun, FANG Bo, et al. Research progress on application of surfactants in unconventional oil and gas stimulation[J]. Petrochemical Technology, 2023, 52(5):734-741. doi: 10.3969/j.issn.1000-8144.2023.05.020 [7] XU T, MAO J C, ZHANG Y, et al. Application of Gemini viscoelastic surfactant with high salt in brine-based fracturing fluid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611:125838. doi: 10.1016/j.colsurfa.2020.125838 [8] ZANA R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review[J]. Advances in Colloid and Interface Science, 2002, 97(1/3):205-253. [9] CHEN J, TAN X Y, FANG B, et al. Rheological behavior of a novel fracturing fluid formed from amine oxide surfactants[J]. Journal of Surfactants and Detergents, 2022, 25(5):601-612. doi: 10.1002/jsde.12606 [10] ZHAO J, FANG B, GUO Y G. Synergistic rheological behavior of mixed micellar solutions of surfactin and cetyl trimethyl ammonium bromide[J]. Journal of Surfactants and Detergents, 2020, 23(3):573-579. doi: 10.1002/jsde.12395 [11] XU W T, HAN X Y, FANG B, et al. Rheology on novel viscoelastic trimeric octadecyl zwitterionic surfactant micelle solutions[J]. Journal of Surfactants and Detergents, 2023, 26(5):667-681. [12] TAN X Y, CHEN J, FANG B, et al. Rheology on high temperature resistant novel trimeric cationic viscoelastic surfactant with KCl[J]. Journal of Dispersion Science and Technology, 2023, 44(12):2231-2238. doi: 10.1080/01932691.2022.2065296 [13] WU H N, FANG B, YU L Y, et al. Rheology and delayed micellar formation process of novel tetrameric cationic surfactant fracturing fluid[J]. Journal of Surfactants and Detergents, 2023, 26(6):827-842. [14] 李杰. 树林状低聚表面活性剂的合成及性能研究[D]. 大庆: 东北石油大学, 2011.LI Jie. Synthesis and performances of dendrimer oligomeric surfacants[D]. Daqing: Northeast Petroleum University, 2011. [15] 骆慧. 耐高温黏弹性表面活性剂胶束压裂液流变性研究[D]. 上海: 华东理工大学, 2021.LUO Hui. Study on rheology of surfactant micelle systems[D]. Shanghai: East China University of Science and Technology, 2021. [16] KHATORY A, LEQUEUX F, KERN F, et al. Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content[J]. Langmuir, 1993, 9(6):1456-1464. doi: 10.1021/la00030a005 [17] FU H R, DUAN W M, ZHANG T L, et al. Preparation and mechanism of pH and temperature stimulus-responsive wormlike micelles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624:126788. doi: 10.1016/j.colsurfa.2021.126788 [18] FAN H M, ZHENG T, CHEN H L, et al. Viscoelastic surfactants with high salt tolerance, fast-dissolving property, and ultralow interfacial tension for chemical flooding in offshore oilfields[J]. Journal of Surfactants and Detergents, 2018, 21(4):475-488. doi: 10.1002/jsde.12042 [19] YASUDA K, ARMSTRONG R C, COHEN R E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes[J]. Rheologica acta, 1981, 20(2):163-178. doi: 10.1007/BF01513059 [20] SHRESTHA R G, SHRESTHA L K, ARAMAKI K. Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant systems[J]. Journal of Colloid and Interface Science, 2007, 311(1):276-284. doi: 10.1016/j.jcis.2007.02.050 [21] BARNES H A. Thixotropy-a review[J]. Journal of Non-Newtonian Fluid Mechanics, 1997, 70(1/2):1-33. [22] 高航, 方波, 许可, 等. HPAM溶液流变性与减阻关系[J]. 钻井液与完井液,2022,39(1):100-106. doi: 10.12358/j.issn.1001-5620.2022.01.017GAO Hang, FANG Bo, XU Ke, et al. Study on relationship between rheology of HPAM solution and friction reduction[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):100-106. doi: 10.12358/j.issn.1001-5620.2022.01.017 [23] XIONG J P, FANG B, LU Y J, et al. Rheology and high-temperature stability of novel viscoelastic Gemini micelle solutions[J]. Journal of Dispersion Science and Technology, 2018, 39(9):1324-1327. [24] HUANG Z G, MAO J C, CUN M, et al. Polyhydroxy cationic viscoelastic surfactant for clean fracturing fluids: Study on the salt tolerance and the effect of salt on the high temperature stability of wormlike micelles[J]. Journal of Molecular Liquids, 2022, 366:120354. doi: 10.1016/j.molliq.2022.120354 [25] HALDAR J, ASWAL V K, GOYAL P S, et al. Role of incorporation of multiple headgroups in cationic surfactants in determining micellar properties. Small-angle-neutron-scattering and fluorescence studies[J]. The Journal of Physical Chemistry B, 2001, 105(51):12803-12808. [26] XU D Q, NI X Y, ZHANG C Y, et al. Synthesis and properties of biodegradable cationic gemini surfactants with diester and flexible spacers[J]. Journal of Molecular Liquids, 2017, 240:542-548. doi: 10.1016/j.molliq.2017.05.092 [27] ZHANG W L, MAO J C, YANG X J, et al. Study of a novel Gemini viscoelastic surfactant with high performance in clean fracturing fluid application[J]. Polymers, 2018, 10(11):1215. doi: 10.3390/polym10111215 [28] LI R, ZHANG Q, PEI X M, et al. The rheological behavior of organic salt/Gemini surfactant mixed systems: effect of isomerization of additives[J]. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2020, 585:124114. doi: 10.1016/j.colsurfa.2019.124114 -