留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滑溜水压裂返排液在钻井液中资源化利用

刘怀珠 赵康宁 陈东 张超 常晓峰 张洁 张望远 张帆

刘怀珠,赵康宁,陈东,等. 滑溜水压裂返排液在钻井液中资源化利用[J]. 钻井液与完井液,2025,42(1):127-133 doi: 10.12358/j.issn.1001-5620.2025.01.014
引用本文: 刘怀珠,赵康宁,陈东,等. 滑溜水压裂返排液在钻井液中资源化利用[J]. 钻井液与完井液,2025,42(1):127-133 doi: 10.12358/j.issn.1001-5620.2025.01.014
LIU Huaizhu, ZHAO Kangning, CHEN Dong, et al.Recycling in drilling fluids of flowback fluids from slick water fracturing operation[J]. Drilling Fluid & Completion Fluid,2025, 42(1):127-133 doi: 10.12358/j.issn.1001-5620.2025.01.014
Citation: LIU Huaizhu, ZHAO Kangning, CHEN Dong, et al.Recycling in drilling fluids of flowback fluids from slick water fracturing operation[J]. Drilling Fluid & Completion Fluid,2025, 42(1):127-133 doi: 10.12358/j.issn.1001-5620.2025.01.014

滑溜水压裂返排液在钻井液中资源化利用

doi: 10.12358/j.issn.1001-5620.2025.01.014
基金项目: 国家自然科学基金-青年科学基金项目“共价键抗高温解吸附及隔离膜稳定井壁机理研究”(52204011);陕西省自然科学基础研究计划一般项目(青年)“应对陕北页岩气钻井壁失稳的成膜钻井液新体系研究”(2022JQ-493);省部级国家重点实验室开放课题“抗高温有机硅聚糖提速护壁环保钻井液研究”(PLN2022-15)。
详细信息
    作者简介:

    刘怀珠,高级工程师,研究方向为油气田开发。E-mail:zcy_liuhzh@petrochina.com.cn

    通讯作者:

    张帆,E-mail:zhangfan51@xsyu.edu.cn

  • 中图分类号: TE254.4

Recycling in Drilling Fluids of Flowback Fluids from Slick Water Fracturing Operation

  • 摘要: 针对滑溜水压裂返排液排放量大且成分复杂,难以实现“不落地”处理的技术难题,通过优化滑溜水压裂返排液处理工艺,最大程度地保留有效成分,将处理后的滑溜水压裂返排液作为钻井液组分,实现返排液中水资源和部分处理剂的资源化利用。利用处理后的滑溜水压裂返排液构建了环保型低摩阻钻井液体系配方:配浆水+4%钠基膨润土+0.3%Na2CO3+3%聚糖+0.1%FA-367+1.0%CMC-LV+1.0%油酸甲酯。结果显示,该钻井液体系在25~150℃的温度范围内流变性能稳定,滚动回收率保持在90%以上,线性膨胀率降低72%以上,润滑因数降低率大于80%,且满足环保性能要求。最后,利用扫描电镜分析了滤饼的微观形貌,验证了其在高温下的抑制性能和降滤失性能。

     

  • 图  1  不同包被剂与聚糖选配(页岩滚动回收率)

    图  2  不同降滤失剂对钻井液API滤失量的影响

    图  3  不同钻井液配方分别对应的极压润滑系数

    图  4  不同温度下低摩阻钻井液体系抑制性能测试结果

    图  5  不同密度下低摩阻钻井液沉降稳定性

    图  6  150℃老化后钻井液API滤饼SEM图像

    表  1  滑溜水压裂返排液与预水化浆混合比筛选测试结果

    混合比例
    (处理后压裂返排液∶基浆)
    AV/
    mPa∙s
    PV/
    mPa∙s
    YP/
    Pa
    YP/PV/
    Pa/mPa∙s
    泥饼黏滞系数FLAPI/
    mL
    滚动回收率/
    %
    清水17.64
    0∶1(基浆)14.79.55.20.550.115412.523.45
    1∶07.84.63.20.700.079531.335.78
    1∶19.35.14.20.820.082428.732.30
    2∶110.55.64.90.880.092826.830.65
    3∶111.66.84.80.710.107523.428.97
    4∶112.88.44.40.520.112420.126.43
    5∶114.19.24.90.530.114116.224.88
    下载: 导出CSV

    表  2  聚糖加量对钻井液性能影响

    聚糖/
    %
    AV/
    mPa∙s
    PV/
    mPa∙s
    YP/
    Pa
    YP/PV/
    Pa/mPa∙s
    泥饼黏
    滞系数
    FLAPI/
    mL
    09.305.14.200.820.082428.7
    0.311.659.52.150.230.071525.4
    0.513.3010.33.000.290.064721.8
    1.018.3513.25.150.390.062820.7
    2.022.5514.67.950.540.056618.2
    3.025.9415.910.040.630.051216.1
    下载: 导出CSV

    表  3  降滤失剂对钻井液流变性能的影响

    样品PV/
    mPa∙s
    YP/
    Pa
    YP/PV/
    Pa/mPa∙s
    FLAPI/
    mL
    4.0%Na-MMT5.14.20.8228.7
    4.0%Na-MMT +1.0%PAC-LV14.07.00.5015.9
    4.0%Na-MMT +1.0%CMC-LV19.07.00.3712.5
    4.0%Na-MMT +1.0%DSP-124.012.00.5013.4
    下载: 导出CSV

    表  4  不同温度下低摩阻钻井液体系的流变性能和滤失性能  

    T/
    AV/
    mPa∙s
    PV/
    mPa∙s
    YP/
    Pa
    FLAPI/
    mL
    2538.324.513.83.5
    8035.922.613.36.8
    10033.820.413.49.2
    12031.118.113.012.6
    15029.616.712.915.4
    18018.410.28.228.9
    下载: 导出CSV

    表  5  低摩阻钻井液体系的润滑性能测试结果

    T/℃钻井液润滑因数润滑因数降低率/%T/℃钻井液润滑因数润滑因数降低率/%
    254% Na-MMT0.514591.231204% Na-MMT0.377085.58
    低摩阻钻井液体系0.0451低摩阻钻井液体系0.0544
    804% Na-MMT0.393988.781504% Na-MMT0.377882.27
    低摩阻钻井液体系0.0442低摩阻钻井液体系0.0670
    1004% Na-MMT0.339486.361804% Na-MMT0.385271.63
    低摩阻钻井液体系0.0463低摩阻钻井液体系0.0900
    下载: 导出CSV

    表  6  低摩阻钻井液环保性能测试

    EC50/
    mg·L−1
    COD/
    mg·L−1
    BOD5/
    mg·L−1
    BOD5COD/
    %
    不同元素含量、LC50/
    mg·L−1
    CdHgPbCrAs
    测量值36 00082.514.617.70000.0870.02180 000
    标准值≥30 00060~100≤20≥10≤3≤1≤1≤5≤0.5≥30 000
    下载: 导出CSV
  • [1] HEATH G, HADLEY D, OKESANYA T, et al. Improving sustainability through the utilization of recycled produced water for drilling operations and the associated benefits[C]//SPE Canadian Energy Technology Conference and Exhibition. Calgary, Alberta, Canada, March 2023: SPE-212814-MS.
    [2] 姚兰,李还向,焦炜,等. 压裂返排液重复利用技术现状及展望[J]. 油田化学,2022,39(3):548-553.

    YAO Lan, LI Haixiang, JIAO Wei, et al. Progress and prospect of reuse technology of fracturing flowback fluid[J]. Oilfield Chemistry, 2022, 39(3):548-553.
    [3] LIU H Z, CHEN D, ZHAO K N, et al. The mechanisms of inhibition and lubrication of clean fracturing flowback fluids in water-based drilling fluids[J]. Green Processing and Synthesis, 2023, 12(1):20230062. doi: 10.1515/gps-2023-0062
    [4] 严志虎,戴彩丽,赵明伟,等. 压裂返排液处理技术研究与应用进展[J]. 油田化学,2015,32(3):444-448.

    YAN Zhihu, DAI Caili, ZHAO Mingwei, et al. Research and application progress on treatment technology of fracturing flowback fluid[J]. Oilfield Chemistry, 2015, 32(3):444-448.
    [5] 艾浩辰,张凡,李志军,等. 瓜胶压裂返排液配制环保型钻井液的工艺研究[J]. 化工技术与开发,2022,51(3):46-51,11. doi: 10.3969/j.issn.1671-9905.2022.03.010

    AI Haochen, ZHANG Fan, LI Zhijun, et al. Preparation of eco-friendly drilling fluid using guar gum fracturing flowback fluid[J]. Technology & Development of Chemical Industry, 2022, 51(3):46-51,11. doi: 10.3969/j.issn.1671-9905.2022.03.010
    [6] 张锋,马尧,杨宸睿,等. 国内外油田压裂返排液处理技术研究进展[J]. 油气田地面工程,2022,41(9):61-65.

    ZHANG Feng, MA Yao, YANG Chenrui, et al. Research progress of fracturing flowback fluid treatment technology in domestic and foreign oilfields[J]. Oil-Gasfield Surface Engineering, 2022, 41(9):61-65.
    [7] 王满学,刘建伟,何静,等. 水基压裂液重复使用技术的现状及发展趋势[J]. 断块油气田,2018,25(3):394-397.

    WANG Manxue, LIU Jianwei, HE Jing, et al. Application status and development trend of water-based fracturing fluid reuse technology[J]. Fault-Block Oil and Gas Field, 2018, 25(3):394-397.
    [8] 王景. 压裂返排液复配钻井液技术[J]. 石油化工应用,2021,40(12):23-29. doi: 10.3969/j.issn.1673-5285.2021.12.005

    WANG Jing. Compound drilling fluid technology of fracturing flowback fluid[J]. Petrochemical Industry Application, 2021, 40(12):23-29. doi: 10.3969/j.issn.1673-5285.2021.12.005
    [9] 董沅武,荣家洛,李晓煜,等. 碳中和愿景下页岩气压裂返排液处理技术思考[J]. 油田化学,2023,40(3):534-542.

    DONG Yuanwu, RONG Jialuo, LI Xiaoyu, et al. Thinking on shale gas fracturing flowback fluid treatment technology under carbon neutral vision[J]. Oilfield Chemistry, 2023, 40(3):534-542.
    [10] DOTSON T C. The promise and perils of produced waters: intelligent trial and error as an anticipatory framework for enabling responsible innovation[J]. Journal of Responsible Innovation, 2019, 6(3):305-322. doi: 10.1080/23299460.2019.1603567
    [11] 赵瑞玉,洪美媛,孙重祥,等. 压裂返排液电催化氧化解交联降黏分析[J]. 油田化学,2021,38(1):168-172.

    ZHAO Ruiyu, HONG Meiyuan, SUN Chongxiang, et al. Electrocatalytic oxidation decrosslinking and viscosity reduction of fracturing flowback fluid[J]. Oilfield Chemistry, 2021, 38(1):168-172.
    [12] 张洁,张凡,赵毅,等. 清洁压裂液返排液配制强抑制性钻井液研究[J]. 复杂油气藏,2019,12(2):67-72.

    ZHANG Jie, ZHANG Fan, ZHAO Yi, et al. Strong inhibition drilling fluid prepared by clean fracturing flowback fluid[J]. Complex Hydrocarbon Reservoirs, 2019, 12(2):67-72.
    [13] 吴新民,赵建平,陈亚联,等. 压裂返排液循环再利用影响因素[J]. 钻井液与完井液,2015,32(3):81-85. doi: 10.3969/j.issn.1001-5620.2015.03.023

    WU Xinmin, ZHAO Jianping, CHEN Yalian, et al. Study on recycling of fracturing waste fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(3):81-85. doi: 10.3969/j.issn.1001-5620.2015.03.023
    [14] 焦龙,程超,闫昕,等. 表面活性剂-碱协同处理老化油泥工艺[J]. 油田化学,2019,36(3):535-539.

    JIAO Long, CHENG Chao, YAN Xin, et al. Study on synergistic treatment of aged oil sludge with surfactant and alkali[J]. Oilfield Chemistry, 2019, 36(3):535-539.
    [15] LI F B, YANG J J, LI Q, et al. Review of treatment methods for fracturing flowback fluid[J]. Advanced Materials Research, 2014, 881/883:659-662. doi: 10.4028/www.scientific.net/AMR.881-883.659
    [16] 王改红,廖乐军,郭艳萍. 一种可回收清洁压裂液的研制和应用[J]. 钻井液与完井液,2016,33(6):101-105. doi: 10.3969/j.issn.1001-5620.2016.06.018

    WANG Gaihong, LIAO Lejun, GUO Yanping. The development and application of a recyclable clear fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):101-105. doi: 10.3969/j.issn.1001-5620.2016.06.018
    [17] SU H F, LIN J F, CHEN Q, et al. A novel approach to reducing the biological toxicity of shale gas fracturing flowback fluid through recycling of high-value nano-BaSO4[J]. Journal of Cleaner Production, 2023, 414:137443. doi: 10.1016/j.jclepro.2023.137443
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  28
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-02
  • 修回日期:  2024-09-20
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回