Recycling in Drilling Fluids of Flowback Fluids from Slick Water Fracturing Operation
-
摘要: 针对滑溜水压裂返排液排放量大且成分复杂,难以实现“不落地”处理的技术难题,通过优化滑溜水压裂返排液处理工艺,最大程度地保留有效成分,将处理后的滑溜水压裂返排液作为钻井液组分,实现返排液中水资源和部分处理剂的资源化利用。利用处理后的滑溜水压裂返排液构建了环保型低摩阻钻井液体系配方:配浆水+4%钠基膨润土+0.3%Na2CO3+3%聚糖+0.1%FA-367+1.0%CMC-LV+1.0%油酸甲酯。结果显示,该钻井液体系在25~150℃的温度范围内流变性能稳定,滚动回收率保持在90%以上,线性膨胀率降低72%以上,润滑因数降低率大于80%,且满足环保性能要求。最后,利用扫描电镜分析了滤饼的微观形貌,验证了其在高温下的抑制性能和降滤失性能。Abstract: When using slickwater fracturing fluids in reservoir stimulation, large amount of fluids flowed back from the hole have complex compositions and need to be discharged. In disposing these fluids, the “zero discharge” technology does not work. To solve this problem, the techniques for the treatment of the flowback slickwater fracturing fluid are optimized to retain the effective components to the maximum, and the slickwater fracturing fluid after treatment is then used as a component of drilling fluids, thereby realizing the recycling of the water phase and part of the additives in the flowback fracturing fluid. An environmentally friendly low-friction drilling fluid is formulated with flowback slickwater fracturing fluids, the composition of which is as follows: make-up water+4%sodium bentonite+0.3%soda ash + 3%polysaccharide+0.1%FA-367+1.0%CMC-LV+1.0%methyl oleate. Laboratory experiment results show that the properties of this drilling fluid are stable at temperatures between 25℃ and 150℃, the percent shale core recovery on hot rolling test is at least 90%, the linear rate of expansion of shale cores is reduced by at least 72%, the friction coefficient is reduced by at least 80%, and the drilling fluid satisfies the requirements of environment protection. The micromorphology of the mud cakes under SEM proves that this drilling fluid has good shale inhibitive capacity and good filtration control property at elevated temperatures.
-
表 1 滑溜水压裂返排液与预水化浆混合比筛选测试结果
混合比例
(处理后压裂返排液∶基浆)AV/
mPa∙sPV/
mPa∙sYP/
PaYP/PV/
Pa/mPa∙s泥饼黏滞系数 FLAPI/
mL滚动回收率/
%清水 17.64 0∶1(基浆) 14.7 9.5 5.2 0.55 0.1154 12.5 23.45 1∶0 7.8 4.6 3.2 0.70 0.0795 31.3 35.78 1∶1 9.3 5.1 4.2 0.82 0.0824 28.7 32.30 2∶1 10.5 5.6 4.9 0.88 0.0928 26.8 30.65 3∶1 11.6 6.8 4.8 0.71 0.1075 23.4 28.97 4∶1 12.8 8.4 4.4 0.52 0.1124 20.1 26.43 5∶1 14.1 9.2 4.9 0.53 0.1141 16.2 24.88 表 2 聚糖加量对钻井液性能影响
聚糖/
%AV/
mPa∙sPV/
mPa∙sYP/
PaYP/PV/
Pa/mPa∙s泥饼黏
滞系数FLAPI/
mL0 9.30 5.1 4.20 0.82 0.0824 28.7 0.3 11.65 9.5 2.15 0.23 0.0715 25.4 0.5 13.30 10.3 3.00 0.29 0.0647 21.8 1.0 18.35 13.2 5.15 0.39 0.0628 20.7 2.0 22.55 14.6 7.95 0.54 0.0566 18.2 3.0 25.94 15.9 10.04 0.63 0.0512 16.1 表 3 降滤失剂对钻井液流变性能的影响
样品 PV/
mPa∙sYP/
PaYP/PV/
Pa/mPa∙sFLAPI/
mL4.0%Na-MMT 5.1 4.2 0.82 28.7 4.0%Na-MMT +1.0%PAC-LV 14.0 7.0 0.50 15.9 4.0%Na-MMT +1.0%CMC-LV 19.0 7.0 0.37 12.5 4.0%Na-MMT +1.0%DSP-1 24.0 12.0 0.50 13.4 表 4 不同温度下低摩阻钻井液体系的流变性能和滤失性能
T/
℃AV/
mPa∙sPV/
mPa∙sYP/
PaFLAPI/
mL25 38.3 24.5 13.8 3.5 80 35.9 22.6 13.3 6.8 100 33.8 20.4 13.4 9.2 120 31.1 18.1 13.0 12.6 150 29.6 16.7 12.9 15.4 180 18.4 10.2 8.2 28.9 表 5 低摩阻钻井液体系的润滑性能测试结果
T/℃ 钻井液 润滑因数 润滑因数降低率/% T/℃ 钻井液 润滑因数 润滑因数降低率/% 25 4% Na-MMT 0.5145 91.23 120 4% Na-MMT 0.3770 85.58 低摩阻钻井液体系 0.0451 低摩阻钻井液体系 0.0544 80 4% Na-MMT 0.3939 88.78 150 4% Na-MMT 0.3778 82.27 低摩阻钻井液体系 0.0442 低摩阻钻井液体系 0.0670 100 4% Na-MMT 0.3394 86.36 180 4% Na-MMT 0.3852 71.63 低摩阻钻井液体系 0.0463 低摩阻钻井液体系 0.0900 表 6 低摩阻钻井液环保性能测试
EC50/
mg·L−1COD/
mg·L−1BOD5/
mg·L−1BOD5∶ COD/
%不同元素含量、 LC50/
mg·L−1Cd Hg Pb Cr As 测量值 36 000 82.5 14.6 17.7 0 0 0 0.087 0.021 80 000 标准值 ≥30 000 60~100 ≤20 ≥10 ≤3 ≤1 ≤1 ≤5 ≤0.5 ≥30 000 -
[1] HEATH G, HADLEY D, OKESANYA T, et al. Improving sustainability through the utilization of recycled produced water for drilling operations and the associated benefits[C]//SPE Canadian Energy Technology Conference and Exhibition. Calgary, Alberta, Canada, March 2023: SPE-212814-MS. [2] 姚兰,李还向,焦炜,等. 压裂返排液重复利用技术现状及展望[J]. 油田化学,2022,39(3):548-553.YAO Lan, LI Haixiang, JIAO Wei, et al. Progress and prospect of reuse technology of fracturing flowback fluid[J]. Oilfield Chemistry, 2022, 39(3):548-553. [3] LIU H Z, CHEN D, ZHAO K N, et al. The mechanisms of inhibition and lubrication of clean fracturing flowback fluids in water-based drilling fluids[J]. Green Processing and Synthesis, 2023, 12(1):20230062. doi: 10.1515/gps-2023-0062 [4] 严志虎,戴彩丽,赵明伟,等. 压裂返排液处理技术研究与应用进展[J]. 油田化学,2015,32(3):444-448.YAN Zhihu, DAI Caili, ZHAO Mingwei, et al. Research and application progress on treatment technology of fracturing flowback fluid[J]. Oilfield Chemistry, 2015, 32(3):444-448. [5] 艾浩辰,张凡,李志军,等. 瓜胶压裂返排液配制环保型钻井液的工艺研究[J]. 化工技术与开发,2022,51(3):46-51,11. doi: 10.3969/j.issn.1671-9905.2022.03.010AI Haochen, ZHANG Fan, LI Zhijun, et al. Preparation of eco-friendly drilling fluid using guar gum fracturing flowback fluid[J]. Technology & Development of Chemical Industry, 2022, 51(3):46-51,11. doi: 10.3969/j.issn.1671-9905.2022.03.010 [6] 张锋,马尧,杨宸睿,等. 国内外油田压裂返排液处理技术研究进展[J]. 油气田地面工程,2022,41(9):61-65.ZHANG Feng, MA Yao, YANG Chenrui, et al. Research progress of fracturing flowback fluid treatment technology in domestic and foreign oilfields[J]. Oil-Gasfield Surface Engineering, 2022, 41(9):61-65. [7] 王满学,刘建伟,何静,等. 水基压裂液重复使用技术的现状及发展趋势[J]. 断块油气田,2018,25(3):394-397.WANG Manxue, LIU Jianwei, HE Jing, et al. Application status and development trend of water-based fracturing fluid reuse technology[J]. Fault-Block Oil and Gas Field, 2018, 25(3):394-397. [8] 王景. 压裂返排液复配钻井液技术[J]. 石油化工应用,2021,40(12):23-29. doi: 10.3969/j.issn.1673-5285.2021.12.005WANG Jing. Compound drilling fluid technology of fracturing flowback fluid[J]. Petrochemical Industry Application, 2021, 40(12):23-29. doi: 10.3969/j.issn.1673-5285.2021.12.005 [9] 董沅武,荣家洛,李晓煜,等. 碳中和愿景下页岩气压裂返排液处理技术思考[J]. 油田化学,2023,40(3):534-542.DONG Yuanwu, RONG Jialuo, LI Xiaoyu, et al. Thinking on shale gas fracturing flowback fluid treatment technology under carbon neutral vision[J]. Oilfield Chemistry, 2023, 40(3):534-542. [10] DOTSON T C. The promise and perils of produced waters: intelligent trial and error as an anticipatory framework for enabling responsible innovation[J]. Journal of Responsible Innovation, 2019, 6(3):305-322. doi: 10.1080/23299460.2019.1603567 [11] 赵瑞玉,洪美媛,孙重祥,等. 压裂返排液电催化氧化解交联降黏分析[J]. 油田化学,2021,38(1):168-172.ZHAO Ruiyu, HONG Meiyuan, SUN Chongxiang, et al. Electrocatalytic oxidation decrosslinking and viscosity reduction of fracturing flowback fluid[J]. Oilfield Chemistry, 2021, 38(1):168-172. [12] 张洁,张凡,赵毅,等. 清洁压裂液返排液配制强抑制性钻井液研究[J]. 复杂油气藏,2019,12(2):67-72.ZHANG Jie, ZHANG Fan, ZHAO Yi, et al. Strong inhibition drilling fluid prepared by clean fracturing flowback fluid[J]. Complex Hydrocarbon Reservoirs, 2019, 12(2):67-72. [13] 吴新民,赵建平,陈亚联,等. 压裂返排液循环再利用影响因素[J]. 钻井液与完井液,2015,32(3):81-85. doi: 10.3969/j.issn.1001-5620.2015.03.023WU Xinmin, ZHAO Jianping, CHEN Yalian, et al. Study on recycling of fracturing waste fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(3):81-85. doi: 10.3969/j.issn.1001-5620.2015.03.023 [14] 焦龙,程超,闫昕,等. 表面活性剂-碱协同处理老化油泥工艺[J]. 油田化学,2019,36(3):535-539.JIAO Long, CHENG Chao, YAN Xin, et al. Study on synergistic treatment of aged oil sludge with surfactant and alkali[J]. Oilfield Chemistry, 2019, 36(3):535-539. [15] LI F B, YANG J J, LI Q, et al. Review of treatment methods for fracturing flowback fluid[J]. Advanced Materials Research, 2014, 881/883:659-662. doi: 10.4028/www.scientific.net/AMR.881-883.659 [16] 王改红,廖乐军,郭艳萍. 一种可回收清洁压裂液的研制和应用[J]. 钻井液与完井液,2016,33(6):101-105. doi: 10.3969/j.issn.1001-5620.2016.06.018WANG Gaihong, LIAO Lejun, GUO Yanping. The development and application of a recyclable clear fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):101-105. doi: 10.3969/j.issn.1001-5620.2016.06.018 [17] SU H F, LIN J F, CHEN Q, et al. A novel approach to reducing the biological toxicity of shale gas fracturing flowback fluid through recycling of high-value nano-BaSO4[J]. Journal of Cleaner Production, 2023, 414:137443. doi: 10.1016/j.jclepro.2023.137443 -