留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低腐蚀自生热冻胶压裂液流变性能及反应动力学研究

李芋池 罗明良 战永平 樊乔 吕元佳 赵春光

李芋池,罗明良,战永平,等. 低腐蚀自生热冻胶压裂液流变性能及反应动力学研究[J]. 钻井液与完井液,2025,42(1):117-126 doi: 10.12358/j.issn.1001-5620.2025.01.013
引用本文: 李芋池,罗明良,战永平,等. 低腐蚀自生热冻胶压裂液流变性能及反应动力学研究[J]. 钻井液与完井液,2025,42(1):117-126 doi: 10.12358/j.issn.1001-5620.2025.01.013
LI Yuchi, LUO Mingliang, ZHAN Yongping, et al.Study on rheology and reaction kinetics of low corrosion self-heating gelling fracturing fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(1):117-126 doi: 10.12358/j.issn.1001-5620.2025.01.013
Citation: LI Yuchi, LUO Mingliang, ZHAN Yongping, et al.Study on rheology and reaction kinetics of low corrosion self-heating gelling fracturing fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(1):117-126 doi: 10.12358/j.issn.1001-5620.2025.01.013

低腐蚀自生热冻胶压裂液流变性能及反应动力学研究

doi: 10.12358/j.issn.1001-5620.2025.01.013
基金项目: 国家自然科学基金“致密油储层低摩阻纳米磁流体压裂液构筑及渗吸驱油机制”(51874334)。
详细信息
    作者简介:

    李芋池,硕士研究生,研究方向为非常规储层改造新材料技术。E-mail:liyuchi852@163.com

    通讯作者:

    罗明良,博士,教授,博士生导师,研究方向为油田化学与增产改造新技术。E-mail:yfsailing_wxg@163.com

  • 中图分类号: TE357.12

Study on Rheology and Reaction Kinetics of Low Corrosion Self-Heating Gelling Fracturing Fluids

  • 摘要: 在稠油储层压裂改造过程中,压裂液进入裂缝后会降低储层温度,导致裂缝周围原油黏度增加,甚至会堵塞地层。针对此问题,以尿素、亚硝酸钠和氯化铵为生热材料,盐酸为催化剂,耐温耐盐共聚物FS-1为增稠剂,有机锆为交联剂,应用溶液共混法制备了一种低腐蚀自生热冻胶压裂液,评价了压裂液体系的生热产气性能、流变性和耐腐蚀性等性能,测试了反应产生气体组分,探究了不同因素对生热反应速率的影响规律,明确了其反应动力学参数。结果表明:自生热体系具有良好生热生气性能,当反应物浓度、酸性催化剂浓度和初始温度越大,峰值温度越高,生气量越大,到达峰值温度所需时间越短,但生气量随初始温度的增加而略有减少;体系中NH4Cl可大幅降低盐酸浓度,不仅降低了压裂液对压裂管线设备的腐蚀速率,而且有利于压裂液成胶,反应产生大量CO2和N2气体及热量;冻胶一定程度上弱化了生热剂的生热产气性能,60℃、170 s−1下剪切90 min,黏度保持在50 mPa·s以上;自生热冻胶压裂液反应级数m=2.67,n=1.69,活化能ΔE=49.54 kJ/mol,指前因子A=6.82 × 102,相比于自生热体系反应速度大幅下降,可通过反应动力学方程预测该体系反应过程参数并进行调控,为自生热压裂液优化设计提供依据。

     

  • 图  1  反应物浓度对自生热体系生热及产气性能的影响

    图  2  酸性催化剂浓度对自生热体系生热/产气性能影响

    图  3  初始温度对自生热体系生热/产气性能的影响

    图  4  不同酸性催化剂自生热冻胶压裂液生热/产气性能

    图  5  自生热体系产出气体气相色谱图

    图  6  自生热冻胶压裂液黏弹性随剪切应变的变化

    图  7  自生热冻胶压裂液角频率

    图  8  自生热冻胶压裂液耐温耐剪切性能

    图  9  lgt和-lgCH+线性关系图

    图  10  lgC0和lgt线性关系图

    图  11  lnt和1/T线性关系图

    表  1  自生热压裂破胶液体系腐蚀性能对比

    挂片编号2 h腐蚀速率/(
    g·m−2·h−1
    4 h腐蚀速率/(
    g·m−2·h−1
    腐蚀
    现象
    N-10.16530.1894表面光滑,无点蚀或坑蚀
    N-20.17340.1923
    N-30.17210.1941
    平均腐蚀速率/(g·m−2·h−10.17030.1919
    下载: 导出CSV

    表  2  反应动力学参数

    体系 反应级数m 反应级数n 活化能ΔE/(kJ·mol−1 指前因子A 反应动力学方程
    自生热体系 1.96 2.13 52.42 5.78× 107 $ \dfrac{{dC}}{{dt}} = - {\text{5}}{\text{.78 }} \times {\text{ }}{10^7}exp\left( { - 52.42/{\text{R}}T} \right){C_{{\text{H}} + }}^{1.96}{C_0}^{2.13} $
    自生热冻胶压裂液 2.67 1.69 49.54 6.82 × 102 $ \dfrac{{dC}}{{dt}} = - {\text{6}}.82 \times {10^2}exp\left( { - 49.54/{\text{R}}T} \right){C_{{\text{H}} + }}^{2.67}{C_0}^{1.69} $
    下载: 导出CSV
  • [1] 王红科, 刘音, 何武, 等. 高温水配制压裂液技术研究与现场应用[J]. 钻井液与完井液,2020,37(3):384-388. doi: 10.3969/j.issn.1001-5620.2020.03.020

    WANG Hongke, LIU Yin, HE Wu, et al. Preparation of fracturing fluids with hot water[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):384-388. doi: 10.3969/j.issn.1001-5620.2020.03.020
    [2] 田相友, 毕炎超, 肖峰, 等. 渤海低渗稠油油田降压解堵技术研究[J]. 化工技术与开发,2021,50(10):21-24. doi: 10.3969/j.issn.1671-9905.2021.10.006

    TIAN Xiangyou, BI Yanchao, XIAO Feng, et al. Study on depressurization and plug removal technology in Bohai low permeability heavy oil field[J]. Technology & Development of Chemical Industry, 2021, 50(10):21-24. doi: 10.3969/j.issn.1671-9905.2021.10.006
    [3] 安杰, 喻建, 邵东波, 等. 长庆油田环西-彭阳探区长8油层自生热压裂工艺研究与应用[J]. 复杂油气藏,2021,14(4):106-111.

    AN Jie, YU Jian, SHAO Dongbo, et al. Research and application of self-generated heat fracturing technology for Chang 8 reservoir in Huanxi-Pengyang exploration area of Changqing Oilfield[J]. Complex Hydrocarbon Reservoirs, 2021, 14(4):106-111.
    [4] 王成旺, 刘晓庆, 陈文斌, 等. 彭阳油田自生热增能压裂技术[J]. 油气井测试,2022,31(6):27-33.

    WANG Chengwang, LIU Xiaoqing, CHEN Wenbin, et al. Application of authigenic heat energized fracturing technology in Pengyang Oilfield[J]. Well Testing, 2022, 31(6):27-33.
    [5] 朱凡臣, 姜涛, 段志刚, 等. 边底水稠油油藏自生热增能体系研究[J]. 内蒙古石油化工,2019,45(10):108-110.

    ZHU Fanchen, JIANG Tao, DUAN Zhigang, et al. Study on self generated heat energy-increasing system for edge and Bottom water heavy oil reservoir[J]. Inner Mongolia Petrochemical Industry, 2019, 45(10):108-110.
    [6] LIU S, ZHANG Y Y, LUO Y J, et al. Analysis of hydrate exploitation by a new in-situ heat Generation method with chemical reagents based on heat utilization[J]. Journal of Cleaner Production, 2020, 249:119399. doi: 10.1016/j.jclepro.2019.119399
    [7] 雷明, 罗明良, 战永平, 等. 化学自生热压裂液技术研究进展[J]. 油田化学,2022,39(1):170-178,185.

    LEI Ming, LUO Mingliang, ZHAN Yongping, et al. Research progress of fracturing fluid with chemical in-situ heat Generation[J]. Oilfield Chemistry, 2022, 39(1):170-178,185.
    [8] 张璐, 邹剑, 高尚, 等. 渤海油田自生热体系室内研究[J]. 科学技术与工程,2019,19(16):75-81. doi: 10.3969/j.issn.1671-1815.2019.16.010

    ZHANG Lu, ZOU Jian, GAO Shang, et al. Laboratory study on autogenous heat system suitable for Bohai oilfield[J]. Science Technology and Engineering, 2019, 19(16):75-81. doi: 10.3969/j.issn.1671-1815.2019.16.010
    [9] VERSHININ V, FEDOROV K, GANKIN Y, et al. Control methods of propellant fracturing for production stimulation[C]//Paper presented at the SPE Russian Petroleum Technology Conference. Moscow, Russia, 2017: SPE-187691-MS.
    [10] 周长顺, 刘怡君, 吕勇胜, 等. 自生气泡沫压裂工艺技术研究与试验[J]. 石油化工应用,2022,41(10):58-62. doi: 10.3969/j.issn.1673-5285.2022.10.014

    ZHOU Changshun, LIU Yijun, LV Yongsheng, et al. Research and test of autogenetic gas foam fracturing technology[J]. Petrochemical Industry Application, 2022, 41(10):58-62. doi: 10.3969/j.issn.1673-5285.2022.10.014
    [11] 宫大军, 吴志明, 白岩, 等. 低成本耐高温海水基胍胶压裂液[J]. 钻井液与完井液,2024,41(2):256-261. doi: 10.12358/j.issn.1001-5620.2024.02.016

    GONG Dajun, WU Zhiming, BAI Yan, et al. A low cost high temperature seawater-based guar gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):256-261. doi: 10.12358/j.issn.1001-5620.2024.02.016
    [12] 熊波, 徐敏杰, 王丽伟, 等. 清洁自生热压裂液技术与实验方法[J]. 钻井液与完井液,2016,33(1):118-121.

    XIONG Bo, XU Minjie, WANG Liwei, et al. Clear autogenetic heat fracturing fluid and its experiment[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):118-121.
    [13] 张家由, 方行, 赵素惠, 等. 自生热增压类泡沫压裂液研制及应用[J]. 天然气技术与经济,2011,5(2):44-47,75.

    ZHANG Jiayou, FANG Heng, ZHAO Suhui, et al. Autogenic heat and loading foam fracturing fluid and its application[J]. Natural Gas Technology, 2011, 5(2):44-47,75.
    [14] 甄延忠, 营虎虎, 韩进, 等. 低腐蚀自生热压裂液体系的室内研究[J]. 陕西科技大学学报(自然科学版),2013,31(1):62-65.

    ZHEN Yanzhong, YING Huhu, HAN Jin, et al. Research on low corrosion of fracturing fluid in authigenic heat system In-door[J]. Journal of Shaanxi University of Science and Technology(Natural Science Edition), 2013, 31(1):62-65.
    [15] NGUYEN D A, IWANIW M A, FOGLER H S. Kinetics and mechanism of the reaction between ammonium and nitrite ions: Experimental and theoretical studies[J]. Chemical Engineering Science, 2003, 58(19):4351-4362. doi: 10.1016/S0009-2509(03)00317-8
    [16] 战永平, 罗明良, 付春丽, 等. 考虑转化率的亚硝酸钠与氯化铵体系反应动力学[J]. 中国石油大学学报(自然科学版),2023,47(3):173-180.

    ZHAN Yongping, LUO Mingliang, FU Chunli, et al. Reaction kinetics of Sodium nitrite and ammonium chloride system considering conversion rate[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3):173-180.
    [17] 王业飞, 钱程, 姬宗江, 等. 亚硝酸钠与氯化铵体系的反应特征[J]. 石油学报,2020,41(2):226-234.

    WANG Yefei, QIAN Cheng, JI Zongjiang, et al. Reaction characteristics of Sodium nitrite and ammonium chloride system[J]. Acta Petrolei Sinica, 2020, 41(2):226-234.
    [18] ALADE O S, MAHMOUD M, HASSAN A, et al. Evaluation of kinetics and energetics of thermochemical fluids for enhanced recovery of heavy oil and liquid condensate[J]. Energy & Fuels, 2019, 33(6):5538-5543.
    [19] WANG X Y, CUI Y Q, LIU C, et al. Improved kinetic Equations for a NaNO2/NH4Cl Heat Generating System and their Implications in Oil Production[J]. Chemistry and Technology of Fuels and Oils, 2019, 55(5):623-634. doi: 10.1007/s10553-019-01075-9
    [20] 白岩. 定优胶压裂液特性及应用前景展望[J]. 钻井液与完井液,2024,41(4):546-550. doi: 10.12358/j.issn.1001-5620.2024.04.017

    BAI Yan. Characteristics and application prospects of diutan gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2024, 41(4):546-550. doi: 10.12358/j.issn.1001-5620.2024.04.017
    [21] 何乐, 王世彬, 郭建春, 等. 高矿化度水基压裂液技术研究进展[J]. 油田化学,2015,32(4):621-627.

    HE Le, WANG Shibin, GUO Jianchun, et al. Research progress of high-salinity water based fracturing fluids[J]. Oilfield Chemistry, 2015, 32(4):621-627.
    [22] 张学刚, 王秀宇, 王冠华, 等. 铵盐与亚硝酸盐化学生热体系实验研究[J]. 应用化工,2016,45(2):393-396.

    ZHANG Xuegang, WANG Xiuyu, WANG Guanhua, et al. Experiment research on chemical heat and Nitrogen generating system[J]. Applied Chemical Industry, 2016, 45(2):393-396.
    [23] WANG S S, CHEN C L, SHIAU B, et al. In-situ CO2 Generation for EOR by using urea as a gas Generation agent[J]. Fuel, 2018, 217:499-507. doi: 10.1016/j.fuel.2017.12.103
    [24] WANG S S, YUAN Q W, KADHUM M, et al. In Situ carbon dioxide generation for improved recovery: Part II. concentrated urea solutions[C]//Paper presented at the SPE Improved Oil Recovery Conference. Tulsa, Oklahoma, 2018: SPE-190192-MS.
    [25] 吴安明, 陈茂涛, 顾树人, 等. NaNO2与NH4Cl反应动力学及其在油田的应用研究[J]. 石油钻采工艺,1995,17(5):60-64.

    WU Anming, CHEN Maotao, GU Shuren, et al. Study on the reaction kinetics of Sodium nitrite with ammonium chloride and its applications in oilfields[J]. Oil Drilling & Production Technology, 1995, 17(5):60-64.
    [26] 张录社, 徐岗, 陈刚, 等. 亚硝酸钠与氯化铵反应动力学研究[J]. 当代化工,2012,41(9):930-931,953.

    ZHANG Lushe, XU Gang, CHEN Gang, et al. Study on the kinetics of reaction between NaNO2 and NH4Cl[J]. Contemporary Chemical Industry, 2012, 41(9):930-931,953.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  35
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-04
  • 修回日期:  2024-09-23
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回